US Patent No. 10,659,505

METHOD AND SYSTEM FOR NAVIGATION BETWEEN SEGMENTS OF REAL TIME, ADAPTIVE AND NON-SEQUENTIALLY ASSEMBLED VIDEO


Patent No. 10,659,505
Issue Date May 19, 2020
Title Method And System For Navigation Between Segments Of Real Time, Adaptive And Non-sequentially Assembled Video
Inventorship N. Dilip Venkatraman, Greater Noida (IN)
Savitri Dilip, Greater Noida (IN)

Claim of US Patent No. 10,659,505

1. A computer-implemented method for enabling navigation to one or more discrete segments of a real time dynamic and adaptive, non-linear and non-sequentially assembled video, the method comprising:receiving at a video navigation system with a processor, a set of preference data associated with a user from a pre-defined selection criteria and a set of user authentication data, wherein the pre-defined selection criteria corresponds to a digitally processed repository of videos;
fetching at the video navigation system with the processor, one or more tagged videos related to the set of preference data of the user from the digitally processed repository of videos, wherein the one or more tagged videos being fetched based on a correlation of a set of tags associated with each video of the one or more tagged videos with the set of preference data associated with the user;
fragmenting at the video navigation system with the processor, each tagged video of the one or more tagged videos into one or more tagged fragments, wherein each tagged video being fragmented into the one or more tagged fragments, wherein each tagged fragment being characterized by a pre-determined interval of time and wherein each tagged video being fragmented based on segmentation of the tagged video for each pre-determined interval of time;
segregating at the video navigation system with the processor, one or more mapped fragments of the one or more tagged fragments into one or more logical sets of mapped fragments, wherein the one or more mapped fragments being segregated based on a positive mapping of keywords from the set of preference data with the set of tags associated with each tagged fragment of the one or more tagged fragments;
mining at the video navigation system with the processor, semantic context information from each mapped fragment of the one or more mapped fragments and each logical set of mapped fragments of the one or more logical sets of mapped fragments, wherein the semantic context information comprises an object specific context informationand scene specific context information of each mapped fragment and each logical set of mapped fragments;
clustering at the video navigation system with the processor, the one or more logical sets of mapped fragments into corresponding one or more logical clusters of mapped fragments;
assembling at the video navigation system with the processor, at least one of the one or more logical clusters of mapped fragments in a pre-defined order of preference to obtain an assembled video, wherein each logical cluster of mapped fragments being clustered based on analysis of the set of preference data of the user and the semantic context information;
inserting at the video navigation system with the processor, one or more interactive navigation options in corresponding one or more regions, wherein the one or more interactive navigation options being inserted based on analysis of the set of preference data of the user, a real time viewing and selection behavior of the user and the semantic context information associated with each tagged video of the one or more tagged videos; and
serving at the video navigation system with the processor, the assembled video and the inserted one or more interactive navigation options to the user, wherein the one or more interactive navigation options being presented as at least one type of presentation options of a pre-defined types of presentation options and wherein the one or more interactive navigation options being presented for enabling the user to navigate to the one or more discrete segments of the assembled video.