US Pat. No. 10,113,544

LONG-STROKE PUMPING UNIT

WEATHERFORD TECHNOLOGY HO...

1. A pumping unit, comprising:a prime mover for reciprocating a rod string;
a tower;
a counterweight assembly movable along the tower;
a crown mounted atop the tower;
a belt having a first end connected to the counterweight assembly and having a second end connectable to the rod string; and
a dynamic control system for controlling a speed of the prime mover and comprising:
a load cell for measuring force exerted on the rod string;
a sensor for detecting position of the rod string, wherein the sensor is operable to detect a position of the rod string by detecting a position of the counterweight assembly;
an accelerometer for measuring vibration of the rod string or of a production string;
a meter for measuring power consumed by the prime mover; and
a controller operable to:
determine position of and load on a downhole pump connected to the rod string and the production string;
determine acceptability of two or more parameters of the pumping unit;
select a prime objective based on a hierarchy of the parameters and the acceptability of the parameters;
determine an upstroke speed, a downstroke speed, and turnaround accelerations and decelerations for the prime objective; and
monitor for failure of the rod string or belt and control descent of the counterweight assembly in response to detection of the failure.

US Pat. No. 10,113,542

PERISTALTIC PUMP TUBING SECURING SYSTEM

Cook Medical Technologies...

1. A peristaltic pump, comprising:a rotor assembly and a mounting arrangement associated with the rotor assembly;
said mounting arrangement having a first mounting area and a second mounting area;
said first mounting area being mateable with a first mating member having a fluid-carrying tube extending therethrough such that a length of the fluid-carrying tube extends beyond opposing sides of the first mating member;
said second mounting area being mateable with a second mating member having the fluid-carrying tube extending therethrough such that a length of the fluid-carrying tube extends beyond opposing sides of the second mating member; and
at least one sensor positioned within at least one of said mounting areas and arranged to detect a sensor detectable feature of at least one of said mating members;
wherein said first mounting area is arranged to prevent said first mounting area from mating with the second mating member;
wherein said first mounting area includes a locking surface arranged to contact a catch of a deflectable tab member of the first mating member and resist withdrawal of the first mating member from the first mounting area when the catch is engaged with the locking surface; and
wherein the first mating member is advanced along a first direction when mating the first mating member with the first mounting area and wherein the locking surface is transverse to said first direction.

US Pat. No. 10,113,540

LINEAR COMPRESSOR

Haier US Appliance Soluti...

1. A linear compressor, comprising:a cylinder defining a chamber;
a piston slidably received within the chamber of the cylinder;
a driving coil;
an inner back iron positioned in the driving coil, the inner back iron having an outer surface;
a magnet mounted to the inner back iron at the outer surface of the inner back iron such that the magnet faces the driving coil;
a flex mount positioned within the inner back iron and coupled to the inner back iron;
a coupling extending between the flex mount and the piston;
a compliant bellows coupled to the flex mount and the piston; and
a muffler mounted to the flex mount within the inner back iron, one end of the compliant bellows mounted to the muffler within the inner back iron.

US Pat. No. 10,113,538

IMPULSE PUMP

The United States of Amer...

1. A pump for generating impulse energy in the form of a water jet, said pump comprising:a base plate positioned perpendicular to a longitudinal axis of said pump, said base plate including an inner surface, an outer surface, a central aperture collinear to the longitudinal axis and at least one aperture at a radial distance from the central aperture;
a first bearing positioned within the central aperture;
a pusher shaft collinear with the longitudinal axis, said pusher shaft having a plurality of axial sections of ascending diameter adjacent to each other and extending away from the inner surface of said base plate, a smallest diameter section centered within and engaging said first bearing, a second section of increased diameter compared to said first section, a third section of increased diameter compared to said second section, a fourth section of increased diameter compared to said third section, a fifth section of increased diameter compared to said fourth section, a sixth section of increased diameter compared to said fifth section and a seventh section of increased diameter compared to said sixth section;
an idler rotor press-fit to encompass said second section with a plane of said rotor perpendicular to the longitudinal axis, said idler rotor having uniformly spaced markings around a circumference;
a sensor attached to the inner surface of said base plate and in proximity to said idler rotor, said sensor capable of detecting and reading the uniformly spaced markings of said idler rotor;
a first brake caliper including a hydraulic cylinder, said first brake caliper attached to said base plate and bracketing said idler rotor such that when said first brake caliper is actuated, a restraining force is applied by said hydraulic cylinder to said idler rotor and onto said pusher shaft;
a second bearing encompassing said third section;
a flywheel radially affixed to said second bearing;
a positioning plate positioned at an axial location coincident with said sixth section such that rotational motion is capable between said pusher shaft and said positioning plate;
a third bearing positioned within the radially distanced aperture of said base plate;
a drive motor having an attached drive shaft with said motor spaced apart from the outer surface of said base plate and with said drive shaft rotationally positioned within and extending through said third bearing;
a motor drive gear attached coaxially to an end of said drive shaft opposite to the attachment of said drive shaft to said motor, wherein said drive gear is capable of rotating at a predetermined speed;
a flywheel rim gear parallel to and mechanically affixed to said flywheel on a face of said flywheel facing said base plate wherein a rotational speed is capable of being transmitted from said motor drive gear and said flywheel rim gear onto said flywheel;
a ring gear mechanically attached to said flywheel and positioned collinear with the longitudinal axis at a position coincident with said fourth axial section, said ring gear annularly shaped with teeth on an inner rim;
a sun gear positioned collinear with the longitudinal axis and at a same position along the longitudinal axis as said ring gear, with teeth on an outer rim, and secured to said pusher shaft on said fourth axial section;
a plurality of planetary gears distributed circumferentially in an annular space between said sun gear and said ring gear at a same position along the longitudinal axis as said ring gear and said sun gear, each of said planetary gears having a diameter equal to a difference in radii of said ring gear and said sun gear, with teeth on an outer rim to simultaneously mate with said ring gear and said sun gear, and each of said planetary gears having a central aperture;
a fourth bearing surrounding said fifth axial section;
a disk shaped planetary gear carrier affixed to said fourth bearing, said planetary gear carrier having a central aperture, and multiple attachment points distributed circumferentially at a radial offset equal to an average radius of an outer diameter of said sun gear and an inner radius of said ring gear;
a plurality of planetary gear shafts with each of said planetary gear shafts rigidly attached perpendicular to a surface of said planetary gear carrier at each of said multiple attachment points with each of said planetary gear shafts supporting each of said planetary gears;
a plurality of planetary gear bearings, each of said planetary gear bearings positioned in each of said central apertures of said planetary gears to allow rotation of said planetary gears about said planetary gear shafts;
a tubular gear box housing coaxial with the longitudinal axis, said tubular gear box housing attached to said base plate on one end and said positioning plate on another end and enclosing said flywheel, said idler rotor, said sensor, said first brake caliper, said motor drive gear, said flywheel rim gear, said ring gear, said sun gear, said planetary gears, said planetary gear bearing, said planetary gear carrier and said planetary gear shafts;
a second brake caliper with hydraulic cylinder within said tubular gear box housing, said second brake caliper attached to said positioning plate and bracketing said planetary gear carrier such that when said second brake caliper is actuated, said hydraulic cylinder is capable of applying a restraining force to said planetary gear carrier and when said second brake caliper is inactivated, said hydraulic cylinder removes the restraining force thereby allowing said planetary gear carrier and said flywheel to rotate;
a thrust bearing positioned coaxially to the longitudinal axis at a position along the longitudinal axis coincident and secured to said seventh section of said pusher shaft wherein said thrust bearing is capable of allowing said pusher shaft to rotate under axial loads while dampening longitudinal loads toward said positioning plate;
a tubular cam assembly housing, said tubular cam assembly housing coaxial with the longitudinal axis and attached at a first end to said positioning plate on a side of said positioning plate opposite to said tubular gear box housing;
a cam assembly within said tubular cam assembly housing, with said cam assembly attached to said pusher shaft at an end opposite to an end of said pusher shaft at said first bearing with said cam assembly having a contoured cam race-way on a second end;
a cam follower arm extending laterally from the longitudinal axis to an offset radial location, said cam follower arm having a cam roller in rotational contact with said cam race-way at the offset radial location;
a plunger positioned coaxially with the longitudinal axis, said plunger having a square cross-section portion attached to said cam follower arm and a cylindrical portion extending away from said square cross-section portion along the longitudinal axis;
a head block positioned coaxially with the longitudinal axis and encompassing said head plunger, said head block have a central bore divided into three sections; a shallow circular bore at a flanged end of said head block, a square section of a smaller cross sectional area than said first circular bored section extending axially from an end of said first circular bored section to a second axial location, and a second circular section extending from an end of said square section to an unflanged end of said head block wherein said second circular section is a reservoir for said pump;
a plurality of sleeve bearings positioned between a surface of said square section of said head block and said plunger;
a compression spring positioned coaxially with the longitudinal axis between said shallow circular bore at the flanged end of said head block and said cam follower arm wherein contact between said plunger and said cam follower arm is maintained by said compression spring; and
a circular plate positioned at an unflanged end of said head block with an aperture at a center of said circular plate to form a nozzle;
wherein said drive motor is capable of accelerating the flywheel to a predetermined speed as said pusher shaft is held stationary such that energy is stored in said flywheel as rotational kinetic energy and the rotational kinetic energy is applied as an accelerating torque from said flywheel to said pusher shaft when said flywheel decelerates;
wherein rotating said pusher shaft in a first direction results in movement along the longitudinal axis for rolling said cam way wherein the fluid is drawn into said reservoir by movement of said plunger to said base plate;
wherein rotating said pusher shaft in a second direction results in movement along the longitudinal axis for rolling said cam way wherein the fluid forced from said reservoir and said nozzle by movement of said plunger away from said base plate.

US Pat. No. 10,113,536

MODULAR MOLTEN SALT SOLAR TOWERS WITH THERMAL STORAGE FOR PROCESS OR POWER GENERATION OR COGENERATION

1. A solar thermal energy generation and storage system, comprising:(A) a plurality of heliostat fields surrounding a central location, wherein each heliostat field comprises:
(i) a solar receiver comprising a plurality of tube panels arranged on an exterior of a support structure, the tube panels being fluidly connected to form at least one flow path; and
(ii) a first plurality of heliostats arranged around the solar receiver;
(B) a first set of cold storage tanks configured to supply heat transfer fluid to at least one solar receiver in the plurality of heliostat fields; and
(C) a first set of hot storage tanks configured to receive heat transfer fluid from at least one solar receiver in the plurality of heliostat fields;
wherein the first set of cold storage tanks comprises at least one cold fluid storage tank and at least one cold fluid pump tank, the at least one cold fluid pump tank having at least one pump to send the heat transfer fluid to the first solar receiver, and wherein the at least one cold fluid storage tank does not have a pump and is fluidly connected only to the at least one cold fluid pump tank.

US Pat. No. 10,113,534

POWER GENERATING WINDBAGS AND WATERBAGS

1. A system for generation of electrical power comprising:an aerial drone having an inner frame covered by an external airframe having layers of airbags stacked on top of each other, the aerial drone has at least one tether line attached to the aerial drone;
a driven unit having a body that includes a generator, the driven unit attached to the aerial drone by the at least one tether line; and
a computer in communication with the aerial drone and configured to control the inflation and deflation of the airbags of the aerial drone;
wherein computerized sequential manipulation of the plurality of said airbag's inflation and deflation controls the aerial drone's external shape and contours and enables generation of electrical power from captured wind currents so that the driven unit 500a is lofted by the aerial drone; and
wherein inflation of the airbags creates kinetic energy that is captured within the air bag and transmitted to the driven unit generator to generate electrical power.

US Pat. No. 10,113,533

SYSTEM AND METHOD FOR REDUCING WIND TURBINE OSCILLATIONS CAUSED BY GRID FAULTS

General Electric Company,...

1. A method for operating a wind turbine in response to one or more grid events occurring in a power grid, the method comprising:monitoring, via one or more sensors, a grid voltage of the power grid so as to detect one or more grid events occurring in the power grid;
in response to detecting one or more grid events occurring in the power grid, determining, via a controller, an operating catch point for a wind turbine component as a function of an inverse of a natural frequency of the wind turbine component after the one or more grid events occurred such that the operating catch point equals an operating condition of the wind turbine at a predetermined moment in time before the one or more grid events occurred in the power grid, the operating catch point comprising at least one of a generator speed, a rotor speed, a torque demand, a torque output, or a generator position demand; and
applying a torque demand to the wind turbine component when the operating catch point is reached so as to reduce oscillations of the wind turbine component, wherein the torque demand is equal to an initial torque demand acting on the wind turbine component before the one or more grid events occurred.

US Pat. No. 10,113,532

PRE-CURED COMPOSITES FOR ROTOR BLADE COMPONENTS

General Electric Company,...

1. A rotor blade component for a rotor blade of a wind turbine, the rotor blade component comprising:a plurality of pre-cured composites stacked atop each other, each of the plurality of pre-cured composites comprising:
a continuous base portion comprising a first side and an opposing second side, the first side having a plurality of integral protrusions extending therefrom, wherein adjacent protrusions are separated by a gap, and
a fabric layer attached to the second side of the continuous base portion opposite the plurality of integral protrusions,
wherein, when the pre-cured composites are stacked together, a plurality of gaps are defined in the rotor blade component between at least one of the fabric layers of the plurality of pre-cured composites and the plurality of integral protrusions of an adjacent pre-cured composite.

US Pat. No. 10,113,531

METHODS FOR REPAIRING WIND TURBINE ROTOR BLADES

General Electric Company,...

1. A method for repairing a rotor blade of a wind turbine, the method comprising:identifying at least one defect on one or more surfaces of the rotor blade, the one or more outer surfaces of the rotor blade constructed, at least in part, of a thermoplastic material reinforced with at least one fiber material;
shaping at least one layer of thermoplastic material using at least one of a temperature-resistant non-stick surface, an insulative material, or a conductive material;
arranging the at least one layer of thermoplastic material with the defect; and,
welding the at least one layer of thermoplastic material to the thermoplastic material of the one or more surfaces of the rotor blade at the at least one defect for a predetermined time period.

US Pat. No. 10,113,530

METHODS AND SYSTEMS FOR REMOVING AND/OR INSTALLING WIND TURBINE ROTOR BLADES

General Electric Company,...

1. A method for installing a blade sock onto a rotor blade of a wind turbine, the method comprising:positioning the blade sock adjacent to a blade tip of the rotor blade, the blade sock comprising a sock strap forming a closed-shape;
moving the blade sock relative to the rotor blade such that the blade tip is received within the closed-shape formed by the sock strap; and,
moving the blade sock spanwise along the rotor blade towards a blade root of the rotor blade until the blade sock is positioned at an intermediate location defined between the blade root and the blade tip,
wherein the sock strap is a closed-shape with a fixed perimeter length defining an internal area generally corresponding to a cross-sectional area of the rotor blade at the intermediate location such that the blade sock is prevented from being moved further towards the blade root when it reaches the intermediate location, and
wherein the intermediate location is defined at an outboard location on the rotor blade that is spaced apart from the blade root by a spanwise distance greater than 50% of a blade span of the rotor blade such that the entirety of the blade sock is located at least the spanwise distance from the blade root.

US Pat. No. 10,113,529

APPARATUS FOR CONVERTING WAVE ENERGY INTO ELECTRICAL ENERGY

1. Apparatus for converting wave energy into electrical energy, comprising:a float element excited by a wave at a defined frequency,
a power-extraction system collaborating with the float element in order to convert mechanical energy into electrical energy, said mechanical energy coming from the movement of the float element excited by said wave,wherein said power-extraction system is in the form of a frequency amplifier composed of:at least two piezoelectric motors each composed of at least one piezoelectric post excited at a frequency higher than that of said float,
a member for activating said piezoelectric motors, said member acting on the piezoelectric motors so as to squash said piezoelectric posts,each piezoelectric motor comprising a mechanical amplification device, said device being connected to rollers and comprising:a) jaws which, when they are acted on, apply a mechanical stress to said posts,
b) a lever acting on the jaws so as to stress them, said lever comprising a proximal end attached to said jaws and a distal end attached to a roller, said roller being in contact with the member so as to activate said piezoelectric motor,and wherein said power extraction system comprises an oscillating arm composed of a first end attached to said member and a second end attached to said float, so that said arm transfers the mechanical energy coming from the movement of said float to said member.

US Pat. No. 10,113,526

IGNITION APPARATUS FOR INTERNAL COMBUSTION ENGINE

DENSO CORPORATION, Kariy...

1. An ignition apparatus for an internal combustion engine comprising:a spark plug that performs electric discharge for igniting a combustible air-fuel mixture inside a combustion chamber of an internal combustion engine;
a first ignition coil and a second ignition coil that include a primary coil and a secondary coil and apply a voltage to the spark plug by the secondary coil;
a voltage applying means for applying a predetermined voltage to the primary coil included in the first ignition coil;
a voltage boosting means for boosting the voltage supplied by the voltage applying means;
a first switching element that conducts and interrupts a primary current flowing to the primary coil included in the first ignition coil;
a second switching element that applies the voltage boosted by the voltage boosting means to the primary coil included in the second ignition coil;
a discharge starting means for starting the electric discharge by the spark plug by controlling the first switching element; and
a discharge maintaining means for applying the voltage boosted by the voltage boosting means by the second switching element so that electric discharge is maintained after the discharge starting means starts the electric discharge by the spark plug.

US Pat. No. 10,113,524

METHOD FOR PRODUCING A FUEL INJECTOR

ROBERT BOSCH GMBH, Stutt...

1. A method for producing a fuel injector, comprising:providing a valve insert with a first alignment device for aligning the valve insert;
introducing the valve insert into an injection molding die, the valve insert being aligned in the injection molding die using the first alignment device; and
molding the valve insert with a plastic to produce a plastic extrusion coating in such a way that the plastic extrusion coating has a second alignment device,
wherein based on the alignment using the first alignment device, a jet path of the fuel injector is aligned relative to the second alignment device
wherein (i) the fuel injector is aligned during assembly in an internal combustion engine, and (ii) for assembly of the fuel injector in the internal combustion engine, only an alignment of the second alignment device is necessary.

US Pat. No. 10,113,523

INJECTOR

CONTINENTAL AUTOMOTIVE GM...

1. An injector comprising:an actuator chamber,
an actuator arranged in the actuator chamber,
a piston guide having a bore,
a piston arranged in the bore of the piston guide,
a first face side of the piston facing toward the actuator, wherein the first face side delimits a first chamber arranged in the bore,
a second face side of the piston located opposite the first chamber, wherein the second face side delimits a second chamber in the bore,
a high-pressure bore extending from the second chamber of the bore to a high-pressure region, and
a nozzle needle disposed in the high-pressure region for controlling a flow of fuel from the injector into an internal combustion engine, wherein the nozzle needle and the piston are hydraulically coupled through the high-pressure bore but without a mechanical linking member,
wherein the piston is arranged between the first chamber and the second chamber, and a lengthening of the actuator moves the piston away from the actuator, increasing a volume of the first chamber and reducing a volume of the second chamber,
wherein a gap extends around a circumference between the piston and the bore, the gap having a gap width allowing fuel to flow between the first chamber and the second chamber,
wherein the piston includes a first material and the piston guide includes a second material,
wherein the first material, when heated, exhibits a first thermal expansion rate, and the second material, when heated, exhibits a second thermal expansion rate that differs from the first thermal expansion rate, and
wherein the first material is selected relative to the second material such that, as a temperature of the piston guide and the piston increases, the gap width decreases as a result of the differing thermal expansion rates to thereby limit fuel flow between the first chamber and the second chamber.

US Pat. No. 10,113,521

AIR INTAKE SYSTEM FOR INTERNAL COMBUSTION ENGINE

CUMMINS INC., Columbus, ...

1. An internal combustion engine, comprising: an intake manifold; a plurality of jumper tubes coupled to the intake manifold and at least one cylinder head, the plurality of jumper tubes each having a passageway, and a central axis; wherein at least one of the plurality of jumper tubes further includes a fin portion and a rib portion, wherein the fin portion traverses a distance between two points along the interior surface of the jumper tube to define a first transverse airflow passage and a second transverse airflow passage, wherein the fin is positioned at or near an interface where the jumper tube and the intake manifold are coupled, and wherein the rib portion comprises a plurality of ribs extending radially inward from the interior surface of the jumper tube toward the central axis.

US Pat. No. 10,113,520

INTAKE MANIFOLD RETENTION BRACKET FOR LONG-SHORT RUNNER CONTROL

Ford Global Technologies,...

1. An apparatus for rotating a shaft extending through an intake manifold, comprising:a bracket adaptor including a fastener portion and a shaft portion;
an actuating arm including a pin end, a shaft end, and a main arm positioned between the pin end and the shaft end, the shaft end receiving a portion of the shaft and extending into the shaft portion of the bracket adapter; and
a positioning bracket including a body portion and an ear portion extending from the body portion, the body portion defining a body aperture to interface the fastener portion of the bracket adaptor, and the ear portion including an ear aperture to receive partially therethrough a pin at the pin end of the actuating arm.

US Pat. No. 10,113,519

INTAKE APPARATUS

AISIN SEIKI KABUSHIKI KAI...

1. An intake apparatus comprising:an intake apparatus body including a plurality of intake pipes provided for respective cylinders of a multi-cylinder engine; and
a distribution passage distributing an external gas to the plurality of intake pipes,
the distribution passage including:
a gas passage before branching including a first gas passage through which the external gas flows in a first gas flow direction and a second gas passage through which the external gas flows in a second gas flow direction, the second gas passage curving relative to the first gas passage at a downstream of the first gas passage; and
a gas passage after branching including a third gas passage branched in the first gas flow direction relative to the second gas passage and a fourth gas passage branched in an opposite direction from the first gas flow direction relative to the second gas passage,
an angle formed between the second gas passage and the third gas passage is smaller than an angle formed between the second gas passage and the fourth gas passage.

US Pat. No. 10,113,518

AIR INTAKE DUCT FOR MOTORCYCLE

KAWASAKI JUKOGYO KABUSHIK...

1. An air intake duct for a motorcycle, which air intake duct supplies air taken in through an air inlet in a front portion of a vehicle body to an engine located at a center portion, in a longitudinal direction of the vehicle body, the air intake duct comprising:a duct body extending in the longitudinal direction so as to pass through a lateral side, in a vehicle widthwise direction, of the engine and removably connected at a rear end portion thereof to the engine; and
a duct front removably coupled to a front end portion of the duct body, the duct front having the air inlet and being supported by a vehicle body frame, wherein
the duct front is covered from an outer lateral side by a fairing located at the front portion of the vehicle body, and the duct body is exposed to the outer lateral side from the fairing, and
in a state in which the duct body is removed from the engine, at least a portion of an inner device located inward of the duct body in the vehicle widthwise direction is exposed to enable the inner device to be attached and removed.

US Pat. No. 10,113,516

EXTENDED GASKET PROFILE

1. A filter element unit for an air filter of a vehicle with an internal combustion engine, comprising:a filter element, including
a filter medium;
and a one-piece gasket, including:
a first circumferentially closed gasket part of the one-piece gasket, the first circumferentially closed gasket part circumferentially surrounding the filter element and adapted to seal the filter element against a first channel of a filter housing of the air filter;
a second circumferentially closed gasket part of the one-piece gasket formed unitary with the first circumferentially closed gasket part and spaced apart from the first circumferentially closed gasket part and spaced apart from the filter medium, the second circumferentially closed gasket part adapted to seal a second channel of the filter housing;
at least two bridges arranged between and spacing apart the first circumferentially closed gasket part and the second circumferentially closed gasket part, the at least two bridges connected at a first end to the first circumferentially closed gasket part, the at least two bridges connected at an opposite end to the second circumferentially closed gasket part;
wherein the at least two bridges are spaced apart from each other.

US Pat. No. 10,113,515

WATER COOLED EGR COOLER

Hyundai Motor Company, S...

1. A water-cooled exhaust gas recirculation (EGR) cooler apparatus, comprising:a plurality of tubes disposed within a housing at a predetermined interval, which forms an exhaust gas passage in which exhaust gas passes therethrough, and a tube bonded portion that internally and externally seals the tube is provided at a first side thereof; and
a plurality of supporters interposing the tubes to define a predetermined interval between the tubes and disposed within the housing wherein a coolant passage, in which a coolant flows between the tubes, is formed,
wherein an external surface of a first side of the supporter is bonded to an external surface of the tubes, forming a reinforcing bonded portion wherein the supporter covers and seals the tube bonded portion.

US Pat. No. 10,113,514

VALVE DEVICE

NIFCO INC., Yokosuka-Shi...

1. A valve device forming a portion of a ventilation flow channel of a fuel tank, comprising:a float valve;
a case housing the float valve, and including a first through hole on a top portion of the case;
an outside member housing at least the top portion of the case and including
an attachment portion to a fuel tank, and
a second through hole on a top portion of the outside member to communicate an inside of the tank to an outside of the tank; and
a cylindrical seal member fitted in the first through hole and including
an inner portion to communicate with the second through hole,
an outer flange portion formed at an upper end of the cylindrical seal member and having an outer diameter greater than a diameter of the first through hole, the outer flange portion being pinched between the top portion of the case and the top portion of the outside member,
a lower end of the cylindrical seal member, which becomes a valve seat of the float valve,
a circular rising portion arranged between the outer flange portion and the lower end, the circular rising portion having a diameter greater than that of the lower end and less than that of the outer flange portion, and
an interval between the outer flange portion and the circular rising portion has a diameter less than that of the circular rising portion so that the top portion of the case is sandwiched between the outer flange portion and the circular rising portion to attach the cylindrical seal member to the case.

US Pat. No. 10,113,511

PRESSURE REGULATOR

Parker-Hannifin Corporati...

1. A pressure regulator including:a body having an inlet, an outlet, and a flow passage extending therebetween;
a valve seat supported in the body for movement relative to the body for allowing the position of the valve seat to float relative to the body, the valve seat being resiliently biased downward in a first direction and movable upward in a second direction as a function of inlet pressure of fluid flowing through the flow passage;
a poppet movable relative to the valve seat in the second direction from a first position to a second position;
wherein the valve seat is supported in a nozzle retainer secured to the body and movable relative to the nozzle retainer; and
a poppet guide secured to the nozzle retainer and configured to move in the first and second directions with the poppet while resisting lateral motion of the poppet.

US Pat. No. 10,113,508

GAS TURBINE ENGINE AND METHOD OF ASSEMBLING THE SAME

General Electric Company,...

1. A gas turbine engine having a centerline axis, said gas turbine engine comprising:a variable pitch fan configured for generating reverse thrust;
a fan cowl assembly surrounding said fan to define a bypass duct configured to channel airflow for said fan, wherein said fan cowl assembly comprises a stationary cowl and a transcowl; and
a plurality of actuators are circumferentially spaced apart from one another, alternatingly skewed in different directions relative to the centerline axis of the engine and configured for displacing said transcowl relative to said stationary cowl to form an auxiliary inlet into said bypass duct when said fan is generating reverse thrust.

US Pat. No. 10,113,507

THRUST REVERSER CASCADE ELEMENT OF AN AIRCRAFT GAS TURBINE

1. A thrust reverser cascade of an aircraft gas turbine, comprising:first and second thrust reverser cascade elements, each comprising:
a rigid frame comprising two opposite straight frame struts and two opposite curved frame struts;
a plurality of thrust reverser profiles fixed to and formed as one piece with the rigid frame, each of the plurality of thrust reverser profiles having opposite ends and a central portion extending from one of the opposite ends to another of the opposite ends;
wherein the plurality of thrust reverser profiles are connected only at the opposite ends to the rigid frame;
wherein the central portions of the plurality of thrust reverser profiles are free from the rigid frame except through the opposite ends;
wherein each of the plurality of thrust reverser profiles is free from the others of the plurality of thrust reverser profiles except through the opposite ends;
wherein each of the plurality of thrust reverser profiles is arched or curved in a longitudinal direction of the each of the plurality of thrust reverser profiles;
wherein the first and second thrust reverser cascade elements are made from fiber reinforced plastic;
wherein the first and second thrust reverser cascade elements are arranged side-by-side with one another such that one of the two opposite straight frame struts of the first thrust reverser cascade element is positioned adjacent one of the two opposite straight frame struts of the second thrust reverser cascade element to thereby form a centerline between the first and second thrust reverser cascade elements, the centerline being parallel with an axis of the aircraft gas turbine, the plurality of thrust reverser profiles of the first and second thrust reverser cascade elements converging together toward the centerline such that the plurality of thrust reverser profiles of the first thrust reverser cascade element form a mirror image with the plurality of thrust reverser profiles of the second thrust reverser cascade element.

US Pat. No. 10,113,506

NOZZLE FOR AN AIRCRAFT TURBOPROP ENGINE WITH AN UNDUCTED FAN

1. A nozzle for an aircraft turboprop engine with an unducted fan, comprising:an inner wall,
an outer wall being radially spaced apart from the inner wall and concentric with the inner wall,
a junction area of the inner and outer walls, the junction area comprising a plurality of first pads secured to the inner wall, and a plurality of second pads secured to the outer wall and facing the plurality of first pads,
wherein the plurality of first and second pads are positioned such that the plurality of first pads and the plurality of second pads are not in contact with each other to define a plurality of gaps therebetween when the turboprop engine is at a standstill and such that the plurality of second pads move toward the plurality of first pads to close the gaps to create bearing plane connections therebetween when the turboprop engine is in operation, the junction area being disposed at a trailing edge of the nozzle and comprising at least one opening to create ventilation between the inner and outer walls, the inner and outer walls being inclined toward each other at the junction area.

US Pat. No. 10,113,505

GASKET AND ENGINE WITH THE GASKET

ISHIKAWA GASKET CO., LTD....

1. A gasket adapted to be clamped between two members fastened by fixtures, comprising;a first metal plate forming the gasket;
a second metal plate laminated with the first metal gasket;
fixture holes formed in the first and second metal plates, for inserting the fixtures therein and passing the fixtures therethrough;
sealing subject holes formed in the first and second metal plates;
a sealing bead formed on the first metal plate around one sealing subject hole, and fixture hole beads formed around the fixture holes,
fastening-stress concentration areas located on the first metal plate between the fixture holes and the one sealing subject hole where fastening stresses concentrate when the two members are fastened by the fixtures; and
linear beads formed on the first metal plate only at the fastening-stress concentration areas to reduce the fastening stresses when the two members are fastened, each of the linear beads projecting to a side opposite to the second metal plate not to contact the second metal plate, and being disposed on an axis line connecting a center of one fixture hole and a center of the one sealing subject hole in the first metal plate, one linear bead being located between the sealing bead and the one fixture hole bead without connecting thereto,
wherein one fastening-stress concentration area includes an area on the first metal plate enclosed by two tangent lines of the one fixture hole parallel to the axis line connecting the center of the one fixture hole and the center of the sealing subject hole; an outer edge of the one fixture hole; and an outer edge of the sealing subject hole, and
the fixture holes are arranged outside the one sealing subject hole such that each of the fixture holes has one axis line connecting the center of the one sealing subject hole and the center of each of the fixture holes to thereby form a plurality of axis lines on the first metal plate, the axis lines being arranged relative to the center of the one sealing subject hole, respectively, the one linear bead being located only in the one fastening-stress concentration area and extending along each of the axis lines.

US Pat. No. 10,113,503

COMBUSTION BOWL OF A PISTON FOR AN ENGINE

Caterpillar Inc., Deerfi...

1. A piston for an engine, the piston comprising:a piston body including a piston crown, the piston crown disposed symmetrically about a central longitudinal axis of the piston;
a combustion bowl recessed into the piston body and offset axially inwardly with respect to the piston crown, the combustion bowl disposed symmetrically about the central longitudinal axis;
a central bowl apex protruding axially from the combustion bowl, the central bowl apex disposed symmetrically about the central longitudinal axis and offset axially inwardly with respect to the piston crown;
a first bowl apex protruding axially from the combustion bowl and disposed symmetrically about the central longitudinal axis, the first bowl apex disposed radially inwardly with respect to the piston crown; and
a second bowl apex protruding axially from the combustion bowl and disposed symmetrically about the central longitudinal axis, the second bowl apex disposed radially inwardly with respect to the first bowl apex and radially between the first bowl apex and the central bowl apex, the second bowl apex offset axially inwardly with respect to the central bowl apex,
wherein the first bowl apex includes a first bowl apex radius of curvature in the range of 0 mm to 4 mm, the second bowl apex includes a second bowl apex radius of curvature in the range of 0 mm to 4 mm, the central bowl apex includes a central apex radius of curvature in the range of 0 mm to 20 mm and a central apex angle in the range of 100° to 140°, and a depth of the central bowl apex is in the range of 4 mm to 6 mm.

US Pat. No. 10,113,502

CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE

Ford Global Technologies,...

1. A cylinder head for an internal combustion engine comprising:an inner structural metal member having a first plate forming a deck face of the cylinder head and forming a series of dished cylinder roofs, the inner structural member having cylinder head bolt columns extending from the first plate, exhaust valve guides connected to the first plate by first support arms, intake valve guides connected to the first plate by second support arms, and a second plate configured for mounting an exhaust manifold and extending at an angle to the first plate; and
an outer composite member supported by and surrounding the inner structural member and forming a body of the cylinder head including an intake side wall, first and second end walls, and a top wall opposed to the deck face, the outer composite member defining a cooling jacket, intake ports, and exhaust ports, the outer composite member encapsulating the cylinder head bolts columns and the intake and exhaust valve guides of the inner structural member;
wherein fluid passages of the cooling jacket defined by the outer composite member are lined with metal walls in contact with and encapsulated by the composite material of the outer composite member.

US Pat. No. 10,113,501

COOLING STRUCTURE OF ENGINE

Mazda Motor Corporation, ...

1. A cooling structure of an engine, comprising:a water jacket formed in a cylinder block to surround a cylinder bore of the engine;
a spacer having a vertical wall surface and inserted into the water jacket, and
a coolant inlet formed in an outer wall of the water jacket, and for circulating to the water jacket coolant introduced from the coolant inlet, wherein
the vertical wall surface surrounds the cylinder bore,
the spacer includes a guide part provided at a position of a lower end part of the vertical wall surface corresponding to the coolant inlet, and for guiding the coolant introduced from the coolant inlet to flow around the vertical wall surface,
the guide part extends outwardly from the lower end part of the vertical wall surface toward the coolant inlet along a bottom wall of the water jacket of the cylinder block,
a concaved section is formed in the bottom wall of the water jacket of the cylinder block to dent downward of the coolant inlet, and
the guide part extends into the concaved section from the lower end part of the vertical wall surface.

US Pat. No. 10,113,500

FUEL-PRESSURE CONTROLLER FOR DIRECT INJECTION ENGINE

DENSO CORPORATION, Kariy...

1. A fuel-pressure controller for a direct injection engine having a low-pressure pump and a high-pressure pump, the low-pressure pump pumping up a fuel in a fuel tank and supplying the fuel to the high-pressure pump, the high-pressure pump pressurizing the fuel and discharging a high-pressure fuel toward a fuel injector, the fuel-pressure controller comprising:a low pressure fuel control means for controlling the low-pressure pump in such a manner that a fuel pressure in a low pressure fuel passage agrees with a target low fuel pressure;
a pressure regulator returning the fuel in the low pressure fuel to the fuel tank when the fuel pressure in the low pressure fuel passage becomes greater than or equal to a specified value;
an open-valve detection sensor detecting that the pressure regulator returns the fuel to the fuel tank;
a learning means for executing the low pressure fuel control in a case that a specified learning execution condition is satisfied when the target low fuel pressure is set to the specified value, the learning means for gradually correcting a control amount of the low pressure fuel control so that a fuel pressure in the low pressure fuel passage is increased from a value lower than the specified value, the learning means for learning a control error in the low pressure fuel control based on a correction amount at a time when the open-valve detection sensor detects that the pressure regulator returns the fuel to the fuel tank; and
a correction means for correcting the control amount of the low pressure fuel control based on the control error learned by the learning means, wherein
the low pressure fuel control means varies the target low fuel pressure within a fuel pressure range which is lower than the specified value according to a driving condition of the engine.

US Pat. No. 10,113,499

FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

DENSO CORPORATION, Kariy...

1. A fuel injection control device for an internal combustion engine having a plurality of cylinders and a plurality of fuel injectors, the fuel injectors performing a divided injection to the cylinders, respectively, the fuel injection control device comprising:an accumulator that supplies accumulated fuel to each of the plurality of fuel injectors;
a fuel pressure sensor that detects a fuel pressure inside of the accumulator, and
an electronic control unit that receives a first fuel pressure at a first timing and a second fuel pressure at a second timing which are detected by the fuel pressure sensor at regular time intervals,
wherein:
the electronic control unit calculates a drop amount between the first fuel pressure and the second fuel pressure;
the electronic control unit acquires a fluctuation amount of a fuel injection amount between each of the fuel injectors from the drop amount and learns an injection characteristic of each of the fuel injectors, the injection characteristic indicating a correlation between the fuel injection amount and the fluctuation amount;
the electronic control unit calculates a correction parameter for correcting the fuel injection amount of each of the fuel injectors based on the injection characteristic of each of the fuel injectors;
the electronic control unit disallows a learning of the injection characteristic which is based on the first fuel pressure and the second fuel pressure when at least one of the first fuel pressure and the second fuel pressure is detected during a fuel injection period of one of the plurality of fuel injectors, and
when the fluctuation amount of the fuel injection amount is calculated based on the drop amount, the electronic control unit changes the fuel injection amount which will be associated with the fluctuation amount of the fuel injection amount, based on a number of the fuel injections performed by the predetermined fuel injector during a time period between the first timing and the second timing.

US Pat. No. 10,113,497

METHOD OF OPERATING A DRIVE DEVICE AND CORRESPONDING DRIVE DEVICE

Audi AG, Ingolstadt (DE)...

1. A method for operating a drive device, the drive device comprising an internal combustion engine and an exhaust gas tract having a storage catalytic converter for purifying exhaust gas from the internal combustion engine, a first lambda probe disposed upstream of the storage catalytic converter and a second lambda probe disposed downstream of the storage catalytic converter, the method comprising:determining a lambda value for controlling a mixture composition for the internal combustion engine based on a measurement signal from the first lambda probe and a lambda offset value,
wherein the lambda offset value is determined by way of a trim control designed to adjust the mixture composition when a measurement signal of the second lambda probe is in a normal operating range of values, and
adjusting the lambda offset value in a regeneration period, during which the storage catalytic converter is regenerated, with a predetermined correction value when the measurement signal of the second lambda probe is outside the normal operating range of values.

US Pat. No. 10,113,496

CONNECTED ENERGY MANAGEMENT AND AUTONOMOUS DRIVING STRATEGY FOR ENGINE CYLINDER DEACTIVATION

Continental Automotive Sy...

1. A connected energy management cylinder deactivation system, comprising:an engine having a plurality of cylinders;
a powertrain controller operable for controlling operation of the engine;
an autonomous driving vehicle controller in electrical communication with the powertrain controller;
at least one parameter received by the autonomous driving vehicle controller, the at least one parameter used to determine which of the plurality of cylinders are to be activated and deactivated, the at least one parameter being communicated to the powertrain controller from the autonomous driving controller;
a plurality of data points representing the at least one parameter;
a current time, at least one of the plurality of data points representing a magnitude of the at least one parameter at the current time; and
at least one future time, another of the plurality of data points representing a magnitude of the at least one parameter at the at least one future time;
wherein the powertrain controller activates or deactivates one or more of the plurality of cylinders based on the plurality of data points at both the current time and the at least one future time.

US Pat. No. 10,113,495

EXHAUST GAS RECIRCULATION DEVICE FOR INTERNAL COMBUSTION ENGINE

MITSUBISHI HEAVY INDUSTRI...

1. An exhaust gas recirculation (EGR) device for an internal combustion engine, the EGR device comprising:an exhaust gas recirculation (EGR) control valve provided in an EGR gas passage connecting an exhaust passage and an intake passage in order to control an EGR gas amount; and
an EGR control device that controls the opening and closing of the EGR control valve;
wherein the EGR control device is configured to:
output an opening command signal in relation to the EGR control valve on the basis of an operating condition of the internal combustion engine;
separate the valve opening command signal into a basic component and a variation component generated to be superimposed on the basic component;
determine whether the EGR control valve is in a steady state or a transient state on the basis of a magnitude of the variation component, the EGR control device determining the EGR control valve is in the steady state when the variation component within a threshold is continued for a fixed time;
calculate the valve opening deviation based on the valve opening command signal input into the EGR control valve and an actual measured opening signal relating to the EGR control valve when the EGR control valve is determined to be in the steady state; and
provide the basic component separated from the valve opening command signal to an input of the EGR control valve.

US Pat. No. 10,113,494

FUEL VAPOR FLOW BASED ON ROAD CONDITIONS

Ford Global Technologies,...

1. A method for a vehicle having an on-board controller, comprising:communicating, with the on-board controller, to other vehicles within a threshold distance of the vehicle having a same make and model as the vehicle, via vehicle to vehicle (V2V) communications, including receiving road roughness conditions;
in response to the received road roughness conditions, selectively adjusting one or more engine operating parameters to increase fuel economy, the selectively adjusting including transitioning from a first level associated with lower NVH and combustion instability to a second level associated with higher NVH and combustion instability.

US Pat. No. 10,113,493

SYSTEM, METHOD, AND APPARATUS TO CONTROL GAS SUBSTITUTION CHARACTERISTIC IN DUAL FUEL ENGINE

Caterpillar Inc., Deerfi...

1. An integrated diesel-natural gas combustion engine system comprising:a reciprocating compression ignition diesel-natural gas combustion engine configured to operate using injected diesel fuel as the primary fuel source and natural gas as a secondary fuel source, the reciprocating compression ignition diesel-natural gas combustion engine including:
an intake manifold, and
an exhaust manifold;
a turbocharger operatively connected to the exhaust manifold and configured to use energy of exhaust gas from the exhaust manifold to compress intake air and output compressed intake air for supply to the intake manifold;
an intake manifold air temperature (IMAT) cooling circuit configured to receive the compressed intake air from the turbocharger and cool the compressed intake air, the IMAT cooling circuit including:
a radiator, and
a fan configured to cool the radiator;
an IMAT sensor configured to measure IMAT; and
a controller in communication with the IMAT sensor and configured to:
receive signals from the IMAT sensor regarding measured IMAT, and
control IMAT to optimize natural gas to diesel substitution rate by varying a cooling capacity of the IMAT cooling circuit as a function of at least intake manifold air pressure (IMAP) and load of the reciprocating compression ignition diesel-natural gas combustion engine based on the received signals from the IMAT sensor.

US Pat. No. 10,113,491

AIR-INTAKE SHUTOFF VALVES FOR ENGINES

Caterpillar Inc., Deerfi...

1. An actuation system for a swing gate valve, comprising:a housing having an end wall;
a first piston slidably positioned within the housing;
a second piston slidably positioned within the housing, between the first piston and the end wall;
a piston rod coupled to the first piston and slidably extending through the second piston and the end wall, and configured to be coupled with the swing gate valve;
a first spring arranged between the first piston and the second piston; and
a second spring arranged between the second piston and the end wall, wherein the first spring and the second spring are configured to bias the swing gate valve to a closed position, wherein a spacer is connected to the piston rod and is arranged between the first piston and the second piston to limit a compression of the first spring to a predetermined length, wherein the first spring includes a different spring force than the second spring.

US Pat. No. 10,113,488

APPARATUS AND METHOD FOR CONTROLLING FUEL INJECTION

HYUNDAI MOTOR COMPANY, S...

1. An apparatus for controlling fuel injection comprising:a driving information detector for detecting driving information including a fresh air amount flowing into an intake manifold through a throttle valve, a recirculation gas amount supplied to the intake manifold through an exhaust gas recirculation apparatus, a fuel vapor amount supplied to the intake manifold through a canister purge system, a gas amount supplied to a cylinder from the intake manifold, an internal pressure of the intake manifold, an internal temperature of the intake manifold, a pressure of a recirculation gas and a temperature of the recirculation gas;
an injector for injecting fuel into the cylinder; and
a controller for calculating a gas amount supplied to the cylinder at a next intake stroke from the driving information and controlling a fuel amount injected by the injector at the next intake stroke to be a target air-fuel ratio.

US Pat. No. 10,113,487

CASCADED MULTI-VARIABLE CONTROL SYSTEM FOR A TURBOSHAFT ENGINE

UNITED TECHNOLOGIES CORPO...

1. A control system for a gas turbine engine, comprising:a computer processor;
an outer loop control module programmed into the computer processor configured to determine a torque request that is a torque value, based at least in part on a real-time collective lever angle command and a real-time power turbine speed; and
an inner loop control module programmed into the computer processor configured to receive the torque request from the outer loop control module, to determine fuel flow and inlet guide vane schedules based at least in part on the received torque request, and to command a gas generator of the gas turbine engine to control the gas generator according to the determined fuel flow and inlet guide vane schedules.

US Pat. No. 10,113,486

METHOD AND SYSTEM FOR MODULATED TURBINE COOLING

General Electric Company,...

1. A modulated flow transfer system for transferring a fluid flow from a static component to a rotor of a gas turbine engine, said modulated flow transfer system comprising:an annular inducer configured to accelerate the fluid flow in a substantially circumferential direction in a direction of rotation of the rotor, said annular inducer comprising a row of a plurality of first and second fluid flow outlet openings extending circumferentially about a first face of said annular inducer, said annular inducer further comprising a row of a plurality of first and second fluid flow inlet openings extending circumferentially about a second face of said annular inducer, wherein at least one opening of said plurality of second fluid flow inlet openings comprises a teardrop shape on a curved surface of said annular inducer, said teardrop shape configured to present an efficient load path to stress induced in said annular inducer from a nozzle of a high pressure turbine of the gas turbine engine;
a first fluid flow supply comprising a compressor bleed connection, a feed manifold formed of bendable tubing, and a feed header extending between said compressor bleed connection and said feed manifold, said feed header comprising a modulating valve configured to control an amount of fluid flow into said feed manifold; and
a flow supply tube extending between said feed manifold and said annular inducer, said flow supply tube configured to be coupled to at least one opening of said plurality of first fluid flow inlet openings through a sliding piston seal.

US Pat. No. 10,113,485

DEVICE FOR THE EXTRACTION OF BLEED AIR AND AIRCRAFT ENGINE WITH AT LEAST ONE DEVICE FOR THE EXTRACTION OF BLEED AIR

1. A device for extraction of bleed air from flowing air in an aircraft engine, comprising:an adjustable air inlet positioned at or in an area of a wall of the aircraft engine;
an adjustment mechanism including an actuator for adjusting an inlet cross section of the adjustable air inlet, and
a flow guide separator for separating and diverting a boundary layer flow away from the adjustable air inlet regardless of a size of the inlet cross section, the flow guide separator including a wedge shaped portion with a rounded nose directed into the boundary layer flow;
a first element and a second element which are configured to be moveable with respect to one another, so that the first element and the second element form the inlet cross section in a first position, and the first element and the second element close or substantially close the inlet cross section in a second position;
wherein the first element is moveable;
wherein the second element is fixed and positioned adjacent the flow guide separator;
wherein both the first element and the second element are positioned directly radially outwardly from the flow guide separator in a direction away from the wall into the flowing air and transverse to a direction of the flowing air such that all of the first element, the second element and the flow guide separator intersect a same radial plane that is normal to a main axis of the aircraft engine.

US Pat. No. 10,113,484

HIGH PRESSURE EXHAUST MUFFLING DEVICE WITH MULTIPLE SOURCES

General Electric Company,...

1. A bleed system for exhausting bleed air from a multistage compressor in a gas turbine engine, said system comprising:a first conduit coupled in flow communication with a first bleed location on the compressor such that a first fluid flow is directed within said first conduit;
a first diffuser coupled in flow communication with said first conduit, said first diffuser comprising a body including a plurality of apertures and configured to exhaust the first fluid flow;
a second conduit coupled in flow communication with a second bleed location on the compressor such that a second fluid flow is directed within said second conduit;
a second diffuser disposed adjacent said first diffuser, said second diffuser coupled in flow communication with said second conduit, said second diffuser comprising a body including a plurality of apertures, said second diffuser configured to exhaust the second fluid flow within said second conduit; and
a third diffuser disposed within a bypass duct and at least partially surrounding said first diffuser and said second diffuser, said third diffuser coupled in flow communication with said first diffuser and said second diffuser, said third diffuser comprising a body including a plurality of apertures, said third diffuser configured to exhaust a third fluid flow into a bypass flow within the bypass duct that includes at least one of the first fluid flow exhausted from said first diffuser and the second fluid flow exhausted from said second diffuser.

US Pat. No. 10,113,483

SUMP HOUSING FOR A GAS TURBINE ENGINE

General Electric Company,...

1. A sump housing apparatus for a gas turbine engine, comprising:an annular body; and
a plurality of service tubes arrayed around the annular body, each service tube having a proximal end intersecting the annular body and an opposed distal end, each service tube having an inner port communicating with an interior of the annular body, wherein the proximal ends of two or more of the service tubes intersect the annular body at a common axial location, and respective inner ports of the two or more service tubes communicate with the interior at different axial locations;
wherein the annular body and at least one of the service tubes are part of a monolithic whole.

US Pat. No. 10,113,481

TURBOFAN ENGINE BEARING AND GEARBOX ARRANGEMENT

United Technologies Corpo...

1. A turbofan engine comprising:a fan;
a fan drive gear system;
a fan shaft coupling the fan drive gear system and the fan;
a low spool rotatable about a centerline axis, the low spool including a low pressure turbine driving the fan gear drive system through a low shaft;
an intermediate spool including an intermediate pressure turbine driving an intermediate pressure compressor through an intermediate shaft;
a core spool including a high pressure turbine driving a high pressure compressor through a core shaft;
a first bearing engaging the fan shaft;
a second bearing engaging the fan shaft and the low shaft; and
said second bearing being axially aft of the fan drive gear system with respect to the centerline axis.

US Pat. No. 10,113,479

VALVE MOTION MEASUREMENT ASSEMBLY FOR AN INTERNAL COMBUSTION ENGINE

GM GLOBAL TECHNOLOGY OPER...

1. A valve motion measurement assembly for a cylinder valve of an internal combustion engine having a valve stem and a valve head, the assembly comprising:a valve position sensor;
a supporting bracket having a sensor seat for the valve position sensor, the supporting bracket having a tab seat; and
a sensor target element configured to be coupled to the valve stem to follow the motion of the cylinder valve, the sensor target element including a retainer tab provided with a target surface, the tab seat configured to partially surround the retainer tab for limiting relative rotation between the supporting bracket and the sensor target element;
wherein the valve position sensor interacts with the target surface of the sensor target element for determining the position of the cylinder valve.

US Pat. No. 10,113,478

TURBOCOMPOUND ASSEMBLY, IN PARTICULAR IN THE FIELD OF INDUSTRIAL VEHICLES

FPT MOTORENFORSCHUNG AG, ...

1. A turbocompound assembly, in particular in the field of industrial vehicles comprising a power turbine paired with an engine crankshaft, wherein said paring is carried out through said turbocompound assembly, the assembly comprising:a differential arrangement, wherein the pinion of said power turbine defines a sun gear meshing into two or more planet gears, which in turn mesh into a ring gear coupled with the engine crankshaft;
a hydrodynamic clutch so that said ring gear is coupled with the engine crankshaft through said hydrodynamic clutch; and
a body encloses said hydrodynamic clutch and said ring gear and said body are formed from a single piece of material.

US Pat. No. 10,113,476

HYDRAULIC TURBOCHARGED ENGINE WITH AUTOMATIC START-STOP

Ford Global Technologies,...

1. A method for a vehicle, comprising:in response to the vehicle coming to a stop:
supplying pressure to a hydraulic braking system of the vehicle from an accumulator coupled to a hydraulic pump coupled to a shaft of a turbocharger of an engine installed in the vehicle; and
automatically shutting down the engine while the vehicle is stopped.

US Pat. No. 10,113,474

COOLING DEVICE FOR INTERNAL COMBUSTION ENGINE

DENSO CORPORATION, Kariy...

1. A cooling device for an internal combustion engine, the cooling device including a bypass passage that circulates cooling water for cooling the internal combustion engine to bypass a radiator, the cooling device comprising:an outflow temperature sensor that detects an outflow temperature of the cooling water flowing out from a cooling-water outlet of the internal combustion engine;
a flow control valve that adjusts a flow rate of the cooling water flowing in the bypass passage; and
a control device that controls the flow control valve to be open or closed, wherein
the control device, during a warming of the internal combustion engine, controls the flow control valve to be open or closed based on information about a change rate of the outflow temperature to prevent the change rate of the outflow temperature from decreasing to a minus value, after opening the flow control valve and starting a circulation of the cooling water in a route passing through the bypass passage,
the control device opens the flow control valve to start the circulation of the cooling water in the route passing through the bypass passage when the outflow temperature becomes equal to or higher than a specified value during the warming of the internal combustion engine, and
the control device performs an open/close control routine to repeat:
closing the flow control valve when the information about the change rate of the outflow temperature becomes equal to or higher than a first threshold value; and
opening the flow control valve when the information about the change rate of the outflow temperature becomes equal to or lower than a second threshold value that is smaller than the first threshold value.

US Pat. No. 10,113,473

COOLING SYSTEM FOR AN ELECTRICALLY DRIVEN VEHICLE

RENAULT s.a.s., Boulogne...

1. A cooling system for a motor vehicle including electrical propulsion, comprising:a central processing unit;
a cooling circuit comprising at least one pump for circulating a coolant;
a solenoid valve; and
a radiator;
the cooling circuit configured to cool a battery charger and an electric motor associated with an electronic control device;
wherein the central processing unit is configured to receive diagnostic information including a partial failure status for said at least one pump and phase of use information indicating a phase of use of the vehicle, and manage activation of each pump based on the received diagnostic information and phase of use information, which includes optimizing use of said-partial failure status of each of the pumps.

US Pat. No. 10,113,472

EXHAUST GAS TREATMENT DEVICE

1. An exhaust gas treatment device for an exhaust system of an internal combustion engine of a vehicle, the exhaust gas treatment device comprising:a housing elongated in a direction of a housing longitudinal axis and with an axially open axial end area;
an exhaust gas treatment unit arranged in the housing; and
an exhaust gas guiding device in flow connection with the axially open axial end area of the housing, wherein the exhaust gas guiding device comprises a first flow path area extending along an outer side of the housing and a second flow path area connecting the first flow path area to the axially open axial end area of the housing, the first flow path area having a first axial end area arranged in an axial area of the axially open axial end area of the housing, the exhaust gas guiding device further comprising a hood flow guide element, which hood flow guide element closes the axially open axial end area of the housing and defines the second flow path area in at least some areas, wherein the hood flow guide element projects radially outwardly over the housing in a circumferential area of the housing and connects the second flow path area to the first axial end area of the first flow path area, the exhaust gas guiding device further comprising an exhaust gas guide element arranged on an outer side of the housing and the first flow path area being defined by the first exhaust gas guide element in at least some areas, the hood flow guide element radially overlapping the exhaust gas guide element and overlapping the axially open axial end area of the housing.

US Pat. No. 10,113,469

METHOD OF PROTECTING A DIESEL PARTICULATE FILTER FROM OVERHEATING

Ford Global Technologies,...

7. A vehicle comprising:a diesel engine;
an electric machine connected to the engine;
a battery connected to the electric machine;
a diesel particulate filter (DPF) arranged to receive engine exhaust gas; and
a controller programmed to control the engine and the electric machine to reduce oxygen content of the engine exhaust gas in response to a DPF temperature exceeding a threshold during DPF regeneration while the engine is idling.

US Pat. No. 10,113,468

MIXER ASSEMBLY FOR EXHAUST SYSTEMS AND METHOD OF FORMING THE SAME

1. A mixer assembly of a vehicle exhaust system, said mixer assembly comprising:a base tube section having a plurality of notches formed in an intake end of the base tube section and spaced around a periphery of the intake end;
a blade assembly comprising a plurality of mixing blades disposed in an interior volume of the base tube section;
wherein each blade of the plurality of mixing blades spans across the interior volume of the base tube section and includes a tab at each of the opposing ends of the respective blade that engages a notch of the plurality of notches;
wherein each blade of the plurality of mixing blades includes a pair of fins that extend toward an outlet end of the base tube section and that are spaced apart to define a central channel;
wherein the pair of fins on each blade of the plurality of mixing blades are interconnected by an alignment rib that spans across the central channel; and
wherein the alignment rib of each blade is arranged at a different location from the other blades for the plurality of mixing blades to sequentially engage the base tube with the central channels each receiving at least one alignment rib of the plurality of mixing blades.

US Pat. No. 10,113,465

SYSTEMS AND METHODS TO REDUCE REDUCTANT CONSUMPTION IN EXHAUST AFTERTREATMENT SYSTEMS

Cummins Inc., Columbus, ...

1. A system, comprising:an internal combustion engine operable to produce an exhaust gas;
an exhaust conduit fluidly coupled to the internal combustion engine to receive the exhaust gas;
an oxidation catalyst connected to the exhaust conduit to receive the exhaust gas;
a particulate filter and a first selective catalytic reduction (SCR) device fluidly coupled to the exhaust conduit downstream of the oxidation catalyst;
a second SCR device fluidly coupled to the exhaust conduit downstream of the particulate filter and the first SCR device, wherein the second SCR device is located in a lower temperature operating region than the first SCR device;
a controller operably connected to a first reductant injector and a second reductant injector;
wherein the first reductant injector is upstream of the first SCR device and is controlled by the controller to inject a reductant into the exhaust gas during a first temperature range of operation of the first SCR device to reduce NOx primarily over the first SCR device, and the first reductant injector is disabled by the controller in response to a temperature of the first SCR device being above a reductant oxidation conversion threshold; and
wherein the second reductant injector is downstream of the first SCR device and upstream of the second SCR device and is controlled by the controller to inject the reductant into the exhaust gas to reduce NOx over the second SCR device in response to the temperature of the first SCR device being above the first temperature range and the second SCR device being above a minimum temperature threshold.

US Pat. No. 10,113,462

ADVANCED EXHAUST AFTERTREATMENT SYSTEM ARCHITECTURE

Cummins Inc., Columbus, ...

1. An exhaust aftertreatment system configured to reduce nitrous oxide formation, comprising:a reductant doser;
a first selective catalytic reduction catalyst positioned downstream of the reductant doser, the first selective catalytic reduction catalyst configured for low nitrous oxide formation and low ammonia storage capacity;
a second selective catalytic reduction catalyst positioned downstream of the first selective catalytic reduction catalyst, the second selective catalytic reduction catalyst configured for high ammonia storage capacity; and
a hydrolysis catalyst positioned between the first selective catalytic reduction catalyst and the second selective catalytic reduction catalyst, the hydrolysis catalyst structured to hydrolyze isocyanic acid formed from reductant injected by the reductant doser so as to improve nitrogen oxide reduction performance of the second selective catalytic reduction catalyst.

US Pat. No. 10,113,460

METHOD FOR ADJUSTING THE TEMPERATURE OF AN EXHAUST GAS AFTERTREATMENT DEVICE

Daimler AG, Stuttgart (D...

1. A method for adjusting a temperature of an exhaust gas after treatment device connected to an internal combustion engine having an electric heating element, an oxidation catalytic converter connected downstream of the electric heating element, and a selective catalytic reduction (SCR) catalytic converter connected downstream of the oxidation catalytic converter, comprising the steps of:determining continuously temperature values for a current temperature of the oxidation catalytic converter and of the SCR catalytic converter;
adjusting injection parameters of injection processes for fuel injections into combustion chambers of the internal combustion engine and a heat energy of the electric heating element according to the determined temperature values;
assigning a characteristic temperature value which is assigned to a prespecified conversion threshold to the oxidation catalytic converter and the SCR catalytic converter;
assigning a first characteristic temperature value for an oxidative carbon monoxide conversion and a second characteristic temperature value for an oxidative hydrocarbon conversion to the oxidation catalytic converter, and a third characteristic temperature value for a reductive NOx conversion to the SCR catalytic converter, wherein different respective values for the injection parameters and the heat energy are set upon reaching the first and the second characteristic temperature value and upon reaching the third characteristic temperature value; and
operating the internal combustion engine and the electric heating element according to the set different respective values for the injection parameters and the heat energy.

US Pat. No. 10,113,458

OIL STRAINER

DaikyoNishikawa Corporati...

1. An oil strainer, comprising:a plate-like shaped filter which strains oil; and
a casing which houses the filter, the casing is formed in an elongated shape extending in a longitudinal direction, and
the oil strainer being configured to strain, through the filter, the oil which has flowed into the oil strainer from an oil inlet hole formed in the casing at an upstream end portion along the longitudinal direction, and discharge the oil from an oil outlet hole formed in the casing at a downstream end portion along the longitudinal direction, wherein
the filter is formed in a shape extending in the longitudinal direction, having an upstream end portion and a downstream end portion in the longitudinal direction,
the filter has a mesh portion through which the oil passes, and a frame which surrounds a periphery of the mesh portion, and
the frame is provided with a notch at the downstream end portion of the frame where the frame and the oil outlet hole overlap each other when viewed along an oil flow direction,
the notch is formed such that a cross-sectional area of an oil inlet path increases toward the oil inlet hole, and such that a cross-sectional area of an oil outlet path increases toward the oil outlet hole, and
the notch is shaped such that the upstream side of the oil outlet hole is larger than the cross-sectional area of the oil outlet hole.

US Pat. No. 10,113,457

CAMSHAFT MODULE

Hyundai Motor Company, S...

1. A camshaft module comprising:a head cover in which a camshaft is seated;
a cylinder head with an upper portion coupled to a lower portion of the head cover, and with a plurality of cam followers, operated according to a rotation of the camshaft, formed on the upper portion; and
a gasket between the head cover and the cylinder head, the gasket having a plurality of cam holes formed therein, the cam followers penetrating through the plurality of cam holes, and having supporting parts formed to protrude so as to prevent a falling of the cam followers around the plurality of cam holes.

US Pat. No. 10,113,456

ENGINE OIL SUPPLY SYSTEM

Hyundai Motor Company, S...

1. An engine oil supply system comprising:an oil pan connected with an oil pump at a first side and connected with an oil cooler at a second side;
an oil passage through which oil pressurized by the oil pump flows;
an oil filter disposed in the oil pan to filter impurities in the oil supplied from the oil pump; and
a bypass valve disposed in the oil passage to selectively supply the oil in the oil passage to at least one of the oil cooler and the oil filter,
wherein the bypass valve includes a wax portion configured to expand at a reference temperature, a moving member with a neck, and an elastic member, and
wherein the wax portion of the bypass valve includes a plurality of wax members having different reference temperatures, for a plurality of reference temperatures to be set for the oil.

US Pat. No. 10,113,454

CONTROL DEVICE OF ENGINE

MITSUBISHI JIDOSHA KOGYO ...

1. A control device of an engine, the engine including: a piston which is contained in a cylinder; an intake passage which is communicated to a combustion chamber of the cylinder; an exhaust passage which is led from the combustion chamber; a fuel injection valve which is configured to inject fuel to the combustion chamber or the intake passage; and an ignition unit which is provided in the combustion chamber, the control device comprising:a low speed pre-ignition predicting unit which is configured to perform prediction of occurrence of low speed pre-ignition, based on operation condition of the engine;
a lubricating oil injection controlling unit which is configured to control a lubricating oil injecting device to inject lubricating oil to the piston or a member located around the piston, based on the prediction of the occurrence of the low speed pre-ignition performed by the low speed pre-ignition predicting unit;
a self ignition index calculating unit which is configured to calculate self ignition index which indicates possibility of occurring self ignition of the fuel at a crank angle before an ignition time during a compression stroke, based on temperature and pressure inside the combustion chamber; and
a first correction coefficient calculating unit which is configured to calculate a wall face adhered fuel correction coefficient for correcting the self ignition index, based on an amount of fuel that is adhered to a wall face inside the combustion chamber at the crank angle, wherein
the low speed pre-ignition predicting unit is configured to perform the prediction of the occurrence of the low speed pre-ignition, based on the self ignition index calculated by the self ignition index calculating unit and the wall face adhered fuel correction coefficient.

US Pat. No. 10,113,453

MULTI-FUEL COMPRESSION IGNITION ENGINE

1. A method of improving operational efficiency of an engine comprising the steps of:a. delivering an amount of input power to a shaft rotationally journaled in the engine;
b. generating three hundred and sixty degrees of rotation of the shaft during the engine's operating cycle, the operating cycle comprising:
i. a combustion period commencing at or about zero degrees of rotation of the shaft and terminating at or about 90 degrees of rotation of the shaft, wherein fuel is injected into a combustion chamber at or about zero degrees of rotation of the shaft, and wherein the fuel mixes with air within the combustion chamber, wherein combustion of the air-fuel mixture within the combustion chamber causes an accelerated expansion of high pressure gases, moving one or more pistons connected to the shaft from top dead center of one or more corresponding cylinder chambers toward bottom dead center of the one or more cylinder chambers, wherein a power stroke commences upon ignition of the air-fuel mixture at the commencement of the combustion period and continues through the termination of the combustion period, wherein a rate of the rotation of the shaft coincides with the amount of input power, wherein the input power is generated during the combustion period;
ii. an exhaust period commencing at or about 90 degrees of rotation of the shaft with an opening of one or more exhaust valves, and terminating at or about 255 degrees of rotation of the shaft with a closing of the one or more exhaust valves;
iii. a scavenging period commencing at or about 135 degrees of rotation of the shaft, concurrent with opening of one or more intake ports in a cylinder wall, and terminating with a closing of the one or more intake ports at or about 225 degrees of rotation of the shaft, wherein during the scavenging period air flows into the cylinder chamber through the intake port and out of the cylinder chamber through the exhaust port, wherein the airflow displaces burnt fuel from the combustion chamber; and
iv. a compression period commencing at or about 255 degrees of rotation of the shaft, concurrent with the closing of the exhaust valve, wherein as the one or more pistons travel upward toward top dead center of one or more corresponding cylinder chambers, the air introduced into the combustion chamber during the scavenging period is compressed, increasing the temperature of the air, wherein the heat of compression is sufficient to ignite fuel introduced into the combustion chamber to initiate a successive combustion period,
wherein the engine is a twostroke engine delivering power on every downward movement of the piston;
c. rotating one or more cams, each having a camming surface having a fixed orientation which begins lift and ends lift within the combustion period;
d. engaging one or more cam followers to the camming surface, wherein the one or more cam followers drive one or more pumps during the combustion period, wherein the one or more pumps generate a flow of one or more fluids;
e. accumulating the one or more fluids in one more fluid accumulators during the combustion period, wherein the one or more fluids are accumulated based on power generated during the combustion period, wherein the one or more fluids are stored under pressure within the one or more fluid accumulators;
f. releasing the one or more fluids from the one or more fluid accumulators, wherein the one or more fluids are released outside of the combustion period;
g. the one or more fluids transferring stored pressure as energy, wherein the release of the one or more fluids provides power outside of the combustion period, wherein the power from the released one or more fluids provides all power to operate a lubrication system, a fuel injection system, and for engine valve actuation, wherein springs that are compressed during the combustion period provide power to transfer fuel and circulate coolant outside of the combustion period.

US Pat. No. 10,113,452

EXHAUST VALVE ASSEMBLY FOR A TWO-STROKE INTERNAL COMBUSTION ENGINE AND METHOD FOR CLEANING SAME

1. An exhaust valve assembly for a two-stroke internal combustion engine comprising:a valve actuator movable between a first actuator position, a second actuator position and a third actuator position, the second actuator position being intermediate the first and third actuator positions; and
a two-part valve having a primary valve and a secondary valve, the primary valve being operatively connected to the valve actuator,
the primary valve defining a first valve decompression passage,
the secondary valve defining a second valve decompression passage,
the primary valve being in a first primary valve position when the valve actuator is in the first actuator position,
the primary valve being in a second primary valve position when the valve actuator is in the second actuator position,
the primary valve being in a third primary valve position when the valve actuator is in the third actuator position,
the second primary valve position being intermediate the first and the third primary valve positions,
the secondary valve being in a first secondary valve position when the valve actuator is in any one of the first and second actuator positions,
the secondary valve being in a second secondary valve position when the valve actuator is in the third actuator position,
the first valve decompression passage fluidly communicating with the second valve decompression passage when the valve actuator is in the second actuator position, and
the first valve decompression passage being fluidly separate from the second valve decompression passage when the valve actuator is in any one of the first and third actuator positions.

US Pat. No. 10,113,451

HYDRAULIC VALVE FOR A CAM PHASER

ECO Holding 1 GmbH, Mark...

1. A hydraulic valve for a cam phaser, the hydraulic valve comprising:a housing;
a hollow cylindrical piston which is supported axially movable in a central opening extending along a longitudinal axis of the housing;
a supply connection feeding a hydraulic fluid; and
at least a first operating connection, a second operating connection and a tank connection,
wherein one of the first operating connection or the second operating connection is connectable through an interior space of the piston with the supply connection and another of the first operating connection or the second operating connection is connectable with the tank connection as a function of a position of a position of the piston along the longitudinal axis of the housing,
wherein the piston includes a first flow through opening and a second flow through opening connecting the interior space of the piston with the first operating connection and the second operating connection,
wherein the first flow through opening is associated with the first operating connection and the second flow through opening is associated with the second operating connection,
wherein the piston includes a third flow through opening arranged between the first flow through opening and the second flow through opening,
wherein the third flow through opening is configured for hydraulic fluid to flow from the first operating connection into the interior space of the piston and from the second operating connection into the interior space of the piston, and
wherein the third flow through opening is closable by a check valve arranged in the interior space of the piston to stop a flow of the hydraulic fluid from the interior space of the piston to the first operating connection and the second operating connection.

US Pat. No. 10,113,450

VALVE OPENING AND CLOSING TIMING CONTROL APPARATUS

AISIN SEIKI KABUSHIKI KAI...

1. A valve opening and closing timing control apparatus comprising:a driving side rotor that synchronously rotates with a crankshaft of an internal combustion engine;
a driven side rotor that is disposed at a coaxial core with a rotary shaft core of the driving side rotor and integrally rotates with a camshaft for a valve opening and closing;
a connecting bolt that is disposed at the coaxial core with the rotary shaft core to connect the driven side rotor to the camshaft, and on which an advance angle port communicating with an advance angle chamber partitioned between the driving side rotor and the driven side rotor and a retard angle port communicating with a retard angle chamber partitioned between the driving side rotor and the driven side rotor are formed on an outer peripheral surface; and
a spool that is disposed in a spool chamber of the inside of the connecting bolt, and controls the feeding and discharging of working fluid to the advance angle port or the retard angle port from a pump port formed on the connecting bolt,
wherein the connecting bolt is configured to include a bolt body to be connected to the driven side rotor and a sleeve externally fitting to the bolt body,
wherein the pump port is formed as a through hole over the spool chamber and the outer peripheral surface on the bolt body, and the advance angle port and the retard angle port are formed as a through hole over the bolt body and the sleeve,
wherein an inside space of the camshaft to which the working fluid is supplied from a fluid pressure pump is formed in the camshaft, and one end portion of the sleeve of the connecting bolt to be connected to the camshaft is exposed to the inside space of the camshaft,
wherein an introduction flow passage for supplying the working fluid from the inside space of the camshaft to the pump port is formed to a region avoiding the advance angle port and the retard angle port on at least any one of an inner peripheral surface of the sleeve and the outer peripheral surface of the bolt body,
wherein a regulation mechanism is provided which regulates a posture of rotation around the rotary shaft core of the bolt body and the sleeve, while allowing movement to abut on a portion of the driven side rotor in a direction along the rotary shaft core of the sleeve to the bolt body,
wherein the regulation mechanism includes a first engagement portion formed on the bolt body, a second engagement portion formed on the sleeve, and a engagement member engaged with the first engagement portion and the second engagement portion, and
wherein a gap to allow relative movement in a direction along the rotary shaft core of the bolt body and the sleeve is formed between the first engagement portion and the engagement member or between the second engagement portion and the engagement member.

US Pat. No. 10,113,449

CAM FOLLOWER ROLLER DEVICE WITH INSERT

AKTIEBOLAGET SKF, Gothen...

1. A cam follower roller device comprising:a tappet body,
an insert mounted in the tappet body and provided with a central core and with at least two side tabs,
a pin mounted at least on the tabs of the insert,
a roller mounted on the pin, and
at least one buttress extending from the core to each tab,
wherein the at least two side tabs comprises a first side tab and a second side tab and wherein the at least one buttress comprises a first buttress and a second buttress separated from the first buttress by a first gap and wherein the first buttress and the second buttress extend from the first side tab to the core.

US Pat. No. 10,113,448

ORGANIC RANKINE CYCLE BASED CONVERSION OF GAS PROCESSING PLANT WASTE HEAT INTO POWER

Saudi Arabian Oil Company...

1. A system comprising:a waste heat recovery heat exchanger positioned in a crude oil associated gas processing plant, the waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in the crude oil associated gas processing plant;
an Organic Rankine cycle energy conversion system including:
a pump configured to pump a working fluid to a pressure of between 11 Bar and 12 Bar, the working fluid comprising iso-butane;
an energy conversion heat exchanger configured to heat the working fluid by exchange with the heated heating fluid stream;
a turbine and a generator, wherein the turbine and generator are configured to generate power by expansion of the heated working fluid;
a cooling element configured to cool the expanded working fluid after power generation; and
an accumulation tank, wherein the heating fluid flows from the accumulation tank, through the waste heat recovery heat exchanger, through the Organic Rankine cycle energy conversion system, and back to the accumulation tank,
wherein the crude oil associated gas processing plant is configured to process at least one of a gas that is associated with crude oil from an oil well and natural gas from a gas well to produce a sales gas comprising methane.

US Pat. No. 10,113,447

FAN CASING ARRANGEMENT FOR A GAS TURBINE ENGINE

ROLLS-ROYCE plc, London ...

1. A fan casing arrangement for a gas turbine engine of a type having a propulsive fan, the fan casing arrangement being configured to circumscribe the fan, the fan casing comprising:a fan case;
a fan track liner provided around the inside of the fan case so as to adopt a radial position between the fan and the fan case, the fan track liner including a liner ring having two opposing axially extending end faces spaced apart and forming a gap there between, the two opposing axially extending end faces being angled to each make an acute angle to a radial direction such that a circumferential thickness of the gap is narrower at an external surface than an internal surface of the liner ring; and
a wedge shaped member extending axially within the gap, the wedge shaped member including a radial taper with sloped wedge surfaces corresponding to and in contact with the two opposing axially extending end faces, wherein
the liner ring is radially outwardly biased against the inside of the fan case.

US Pat. No. 10,113,446

ROTARY MACHINE SYSTEM

MITSUBISHI HEAVY INDUSTRI...

1. A rotary machine system comprising:a first rotary machine including a driving shaft capable of being driven about an axis;
a second rotary machine including a driven shaft rotatable about the axis and a bearing device slidably supporting the driven shaft on an axial end portion side with a pad surface such that lubricating oil is supplied to the pad surface;
a coupling unit connecting the driving shaft and the driven shaft to each other such that rotation of the driving shaft is transmitted to the driven shaft; and
a baffle plate disposed between the bearing device and the coupling unit and separating a space on the bearing device side and a space on the coupling unit side from each other, wherein
the second rotary machine includes a casing provided with a tubular portion that has a tubular shape and forms a gap in a radial direction between the tubular portion and the baffle plate,
the baffle plate includes a plurality of support units disposes at intervals in a circumferential direction,
the baffle plate is supported by an inner peripheral surface of the casing via the support units, and
the tubular portion has a discharge part that is configured to discharge the lubricating oil.

US Pat. No. 10,113,445

ROTARY MACHINE AIR DEFLECTOR

Hamilton Sundstrand Corpo...

8. A method for cooling a bearing positioned around a rotating shaft, the method comprising:providing air to a cavity that surrounds the rotating shaft;
deflecting the air towards an innermost surface of the bearing that is positioned radially outward of the rotating shaft, wherein the air is deflected with an air deflector that is mounted on the rotating shaft, wherein the air deflector has a first cylindrical body portion that is connected to a second cylindrical body portion with a ramp portion, and wherein an inner surface of the first cylindrical body portion abuts an outer surface of the shaft; and
flowing the air between an outer surface of the air deflector and the innermost surface of the bearing.

US Pat. No. 10,113,444

HEATED INLET GUIDE VANE

UNITED TECHNOLOGIES CORPO...

1. An inlet guide vane of a gas turbine engine, comprising:an inlet cavity extending between a first end and a second end, the inlet cavity being in communication with a source of heated air,
an outlet cavity extending between the first end and the second end and located between the inlet cavity and a leading edge of the inlet guide vane,
an inner wall disposed between and separating the inlet cavity from the outlet cavity, the inner wall including a plurality of impingement holes providing communication between the inlet cavity and the outlet cavity,
a plurality of bleed holes providing communication between the outlet cavity and an outer surface of the inlet guide vane;
wherein the plurality of bleed holes and the plurality of impingement holes are located such that heated air travelling from the inlet cavity to the outlet cavity through the inner wall via at least one of the plurality of impingement holes will exit from the outlet cavity through one of the plurality of bleed holes prior to it travelling along the entire length of the outlet cavity and wherein airflow into the outer cavity and out of the outer cavity is only provided by the plurality of impingement holes and the plurality of bleed holes.

US Pat. No. 10,113,443

FAILURE DETECTION DEVICE

IHI Corporation, Koto-ku...

1. A failure detection device comprising:an input module that receives values measured by a plurality of sensors that are failure detection targets;
an accumulated data storage unit that stores a plurality of sensor values that were acquired in past as accumulated data;
a unit space generating module that extracts sensor values of a unit space that are used in an MT system from the accumulated data storage unit, for extracted sensor values, uses values as they are for condition sensor values defined as sensor values that affect other sensor values and sensor values that are not affected by the condition sensor values, uses values nondimensionalized by the condition sensor values or values adjusted by the condition sensor values for the other sensor values affected by the condition sensor values, and thereby generates a unit space;
a signal space generating module that, upon inputting a plurality of sensor values that are the failure detection targets to the input module, uses values as they are for the condition sensor values and the sensor values that are not affected by the condition sensor values, uses values nondimensionalized by the condition sensor values or values adjusted by the condition sensor values for the other sensor values, and thereby generates a signal space that is an aggregate of diagnosis data that are used in the MT system; and
a determining module that compares a distance that represents a relationship between the unit space generated by the unit space generating module and the signal space generated by the signal space generating module with a predetermined threshold value, and determines presence/absence of a possibility of a failure of any of the sensors.

US Pat. No. 10,113,441

THERMALLY DRIVEN SPRING VALVE FOR TURBINE GAS PATH PARTS

UNITED TECHNOLOGIES CORPO...

1. A thermally driven spring valve comprising:a metallic sheet comprising a base, the sheet having cutouts forming a first finger portion extending from the base and a second finger portion extending from the base, the first finger portion having a first curvature vector and the second finger portion having a second curvature vector,
wherein the first finger portion, the second finger portion, and the base are monolithic,
wherein an exterior surface extends from the base through the first finger portion and the second finger portion and an interior surface extends from the base through the first finger portion and the second finger portion,
wherein the exterior surface of the first finger portion is disposed proximate the interior surface extending from the base,
wherein the exterior surface of the second finger portion is disposed proximate the interior surface extending from the base.

US Pat. No. 10,113,440

THERMOACOUSTIC ELECTRIC GENERATOR SYSTEM

CENTRAL MOTOR WHEEL CO., ...

1. A thermoacoustic electric generator system comprising:a tube component that is configured by including: an annular tube configured to be annular; and a branched tube branched from the annular tube, extending lengthwise from one end, which is located at a branched point from the annular tube, to the other end, and communicating with the annular tube and, in which specified working gas is enclosed in both of the annular tube and the branched tube;
a thermoacoustic engine that includes: a stack incorporated in an inside of the annular tube in the tube component and having plural channels, each of which extends in a tube longitudinal direction; and a heat exchanger exchanging heat with the working gas such that a temperature gradient is generated between both ends of each of the plural channels in the stack, so as to cause thermoacoustic oscillation of the working gas;
a turbine provided in the branched tube of the tube component and rotating when receiving acoustic energy, which is generated by thermoacoustic oscillation of the working gas in the thermoacoustic engines; and
a generator converting kinetic energy generated by rotation of the turbine to electric energy, wherein
the turbine is provided at a specified position that belongs to a region between a first position and a second position in each region of the branched tube in the tube component, the first position being an intermediate position between the one end and the other end, and the second position being an intermediate position between the first position and the other end.

US Pat. No. 10,113,439

INTERNAL SHROUD FOR A COMPRESSOR OF AN AXIAL-FLOW TURBOMACHINE

SAFRAN AERO BOOSTERS SA, ...

1. An inner shroud or inner shroud segment for an axial-flow turbine engine, the shroud or the shroud segment comprising:a circular or semi-circular wall, of which the profile extends essentially axially, and
a row of apertures formed in the circular or semi-circular wall, each aperture exhibiting opposing edges intended to be disposed laterally to either side of a stator vane positioned in said aperture for the purpose of its attachment,whereinsaid wall comprises at least one radial flange which passes through the apertures in the circumferential direction of the shroud or of the shroud segment, so as to form a mechanical link within each aperture in order to join the opposing edges thereof, andat least one radial flange comprises at least one surface having areas of roughness forming a pattern that is repeated on substantially an entire face of the corresponding radial flange, said surface being generally perpendicular to an axis of revolution of the shroud or of the shroud segment.

US Pat. No. 10,113,438

STATOR VANE SHIPLAP SEAL ASSEMBLY

UNITED TECHNOLOGIES CORPO...

1. A stator vane shiplap seal assembly, comprising:a first shiplap stator cluster coupled to a second shiplap stator cluster, each shiplap stator cluster comprising:
an outer shiplap stator shroud having an axially outward surface and an axially inward surface, and a female end opposite a male end,
wherein the female end comprises a female forward shiplap surface and a female outward shiplap surface, wherein the female forward shiplap surface comprises a first female forward recess located proximate the axially outward surface, a second female forward recess located proximate the axially inward surface, and a first female forward protrusion located between the first female forward recess and the second female forward recess, and wherein the female outward shiplap surface comprises a first female outward protrusion and a first female outward recess, and
wherein the male end comprises a male forward shiplap surface and a male outward shiplap surface, wherein the male forward shiplap surface comprises a first male forward protrusion located proximate the axially outward surface, a second male forward protrusion located proximate the axially inward surface, and a first male recess located between the first male forward protrusion and the second male forward protrusion, and wherein the male outward shiplap surface comprises a first male outward recess and a first male outward protrusion, and
wherein the female forward shiplap surface is complimentary to the male forward shiplap surface, forming an axial shiplap seal in response to the first shiplap stator cluster being coupled to the second shiplap stator cluster, and
wherein the female outward shiplap surface is complimentary to the male outward shiplap surface, forming a radial shiplap seal in response to the first shiplap stator cluster being coupled to the second shiplap stator cluster; and
at least one stator vane coupled to the axially inward surface of the outer shiplap stator shroud.

US Pat. No. 10,113,437

MULTI-PIECE SEAL

UNITED TECHNOLOGIES CORPO...

1. A seal for sealing a space defined by first and second adjacent components disposed about an axial centerline, the seal comprising:a first seal section including a first leg, a second leg, and at least one convolution between the first and second legs;
a second seal section including a third leg, a fourth leg, and at least one convolution between the third and fourth legs; and
a third seal section including a fifth leg, a sixth leg, and at least one convolution between the fifth and sixth legs;
wherein an end of the third leg is located between the first leg and the second leg and the second leg is in contact with a portion of the third leg proximate to the end of the third leg and an end of the fourth leg is located between the fifth leg and the sixth leg and a portion of the fourth leg proximate to the end of the fourth leg is in contact with the fifth leg;
wherein the first seal section sealingly engages with the first component and the third seal section sealingly engages with the second component.

US Pat. No. 10,113,436

CHORDAL SEAL WITH SUDDEN EXPANSION/CONTRACTION

UNITED TECHNOLOGIES CORPO...

1. A static component for a gas turbine engine comprises:an axially extending body comprising a forward end and an aft end disposed axially downstream from the forward end, wherein the axially extending body further comprises a plurality of platform segments;
a rib formed on the aft end of the axially extending body and extending axially from the axially extending body, wherein the rib further comprises a flat surface disposed at an aft end of the rib; and
a recess formed in the rib, wherein the recess extends axially from the flat surface toward the aft end of the axially extending body,
wherein an aft end of each of the plurality of platform segments extends circumferentially between a first side and a second side of the platform segment, wherein the rib extends on the aft end of the platform segment in a straight line from the first side to the second side, and wherein the recess extends on the rib from the first side to the second side in a straight line.

US Pat. No. 10,113,435

COATED GAS TURBINE COMPONENTS

United Technologies Corpo...

1. A method of forming a gas turbine engine component subject to extreme temperatures and pressures, the method comprising:fabricating a wall having a first surface and a second surface which define opposite sides of the wall;
creating an airflow aperture that extends through the wall in a direction substantially perpendicular to the first surface, the airflow aperture defined by an aperture wall surface which extends from a first opening in the first surface to a second opening in the second surface, and which is flared at a juncture with the first surface such that the first opening has a greater cross-sectional flow area than the second opening; and
depositing a high-pressure, high-temperature resistant coating on the first surface, adhered to a portion of the aperture wall surface adjacent the first opening, such that a minimum flow width w of the airflow aperture is reduced and defined by the high-pressure, high-temperature resistant coating, where
Wmajor is a maximum uncoated width of the airflow aperture, Wminor is a minimum uncoated width of the airflow aperture, t is a thickness of the high-pressure, high-temperature resistant coating, and ? is a surface angle between the aperture wall surface and a line normal to the first surface.

US Pat. No. 10,113,434

TURBINE BLADE DAMPER SEAL

UNITED TECHNOLOGIES CORPO...

1. A damper seal received in a cavity of a turbine blade located between a platform and a retention shelf, the damper seal comprising:a central body portion having a first end region, an opposing second end region, and a width;
a first portion extending from the first end region of the central body portion, wherein the first portion includes first outwardly extending tabs that define a first enlarged portion that has a first width greater than the width of the central body portion, wherein the first portion includes a first another tab that extends substantially perpendicularly to the first outwardly extending tabs, and the first another tab extends away from the central body portion such that the first outwardly extending tabs are located between the central body portion and the first another tab; and
a second portion extending from the opposing second end region of the central body portion.

US Pat. No. 10,113,433

GAS TURBINE ENGINE COMPONENTS WITH LATERAL AND FORWARD SWEEP FILM COOLING HOLES

HONEYWELL INTERNATIONAL I...

1. An engine component, comprising:a body having an internal surface and an external surface, the internal surface at least partially defining an internal cooling circuit; and
a plurality of cooling holes formed in the body and extending between the internal cooling circuit and the external surface of the body, the plurality of cooling holes including a first cooling hole with forward diffusion and lateral diffusion,
wherein the first cooling hole includes an inlet at the internal cooling circuit, a metering section extending from the inlet, a first exit portion extending from the metering section, a second exit portion extending from the first exit portion, and an outlet defined on the external surface and fluidly coupled to the second exit portion, wherein the metering section is an oval-shaped cylinder,
wherein the first exit portion extends at a first angle relative to the metering section and the second exit portion extends at a second angle relative to the metering section, the second angle being greater than the first angle to provide the forward diffusion,
wherein the outlet is a multi-lobe shape formed by a first oval, a second oval, and a third oval, each oval having a first end and a second end, wherein the first ends of the first oval, the second oval, and the third oval at least partially overlap, and wherein the second ends of the first oval, the second oval, and the third ovals are splayed relative to one another to provide the lateral diffusion.

US Pat. No. 10,113,431

FLUIDFOIL

ROLLS-ROYCE plc, London ...

1. A fluidfoil comprising:a leading edge; and
a leading edge zone behind the leading edge and extending spanwise over a full span of the fluidfoil,
wherein:
the leading edge zone comprises one or more deflected regions, which locally reduce an angle of attack of the fluidfoil, each of the one or more deflected regions being an upwardly-oriented ramp for fluid passing the leading edge on a suction surface of the fluidfoil, and
each of the one or more deflected regions comprises a depression in the leading edge zone and tapers in a chordwise direction to a point from a maximum spanwise width at the leading edge, through the leading edge zone, to no spanwise width at an interface of the leading edge zone with a main body of the fluidfoil.

US Pat. No. 10,113,430

GROUP OF BLADE ROWS

1. A blade row group arrangeable in a main flow path of a fluid-flow machine, comprising:a quantity (N) of adjacent member blade rows arranged relative to one another in both a meridional direction (m) and a circumferential direction (u), with the quantity (N) of the member blade rows being greater than or equal to 2 and (i) designating a running index with values between 1 and the quantity (N), the quantity (N) of adjacent member blade rows including a front member blade row with front blades (i) each having a leading edge and a trailing edge and a rear member blade row with rear blades (i+1) each having a leading edge and a trailing edge,
where the blade row group has two main flow path boundaries (HB),
a plurality of meridional flow line sections through the blade row group on m-u planes, where in each meridional flow line section, a chord (Se(i)) of one of the front blades and a chord (Se(i+1)) of one of the rear blades are defined as tangents lying on respective profiles on a pressure side of the one of the front blades and a pressure side of the one of the rear blades,
where a profile depth (I(i)) of the one of the front blades and a profile depth (I(i+1)) of the one of the rear blades are provided in a direction of the respective chord,
where values of the profile depths (I(i)) and (I(i+1)) on a mean meridional flow line are identified as (I(i)SLM) and (I(i+1)SLM),
where a standardized profile depth (In(i)) of the one of the front blades and a standardized profile depth (In(i+1)) of the one of the rear blades are defined as In(i)=I(i)/I(i)SLM and In(i+1)=I(i+1)/I(i+1)SLM,
where a profile depth ratio (PTV) of the one of the front blades and the one of the rear blades is defined as: PTV=I(i)/I(i+1),
where a value of the profile depth ratio (PTV) on the mean meridional flow line is identified as PTVSLM, and a relative profile depth ratio (PTVr) is defined as: PTVr=PTV/PTVSLM,
where an additive profile depth (Iadd) of the one of the front blades and the one of the rear blades is defined as: Iadd=I(i)+I(i+1),
where a value of the additive profile depth (Iadd) on the mean meridional flow line is identified as IaddSLM,
where a standardized additive profile depth (Iaddn) is defined as Iaddn=Iadd/IaddSLM,
where a stagger angle (lambda(i)) of the one of the front blades and a stagger angle (lambda(i+1)) of the one of the rear blades are defined as angles of inclination of the respective chords relative to the meridional direction (m),
where a mean stagger angle (lambdam) is defined as a mean value of the stagger angle (lambda(i)) of the one of the front blades and the stagger angle (lambda(i+1)) of the one of the rear blades, in accordance with: lambdam=(lambda(i)+lambda(i+1))/2,
where at each position on a trailing edge of the one of the front blades (i) an auxiliary coordinate system having a first, a second and a third coordinate direction (s, q, or) is provided, with the first coordinate direction (s) facing downstream at the mean stagger angle (lamdam) relative to the meridional direction (m), the second coordinate direction (q), perpendicular to the first coordinate direction (s), facing away from the pressure side of the one of the front blades (i), and the third coordinate direction (or) being perpendicular to the first coordinate direction (s) and to the second coordinate direction (q),
where an effective profile depth (Ieff) is measured as a distance between the leading edge of the one of the front blades (i) and the trailing edge of the one of the rear blades (i+1) parallel to the first coordinate direction (s),
where a value of the effective profile depth (Ieff) on the mean meridional flow line is identified as IeffSLM,
where a standardized effective profile depth (Ieff) of the one of the front blades and rear blades is defined in accordance with: Ieffn=Ieff/IeffSLM, and
where, in an area between the mean meridional flow line (SLM) and one of the two main flow path boundaries (HB), at least one standardized profile depth (In) chosen from a first group including the standardized profile depth (In(i)) of the one of the front blades, and the standardized profile depth (In(i+1)) of the one of the rear blades and the standardized additive profile depth (Iaddn) increases at least locally in a direction of the one of the two main flow path boundaries (HB);
wherein the standardized effective profile depth (Ieffn) in the area between the mean meridional flow line (SLM) and the one of the two main flow path boundaries (HB) is constant within a tolerance between +2% and ?2% of a value on the standardized effective profile depth on the mean meridional flow line (IeffnSLM).

US Pat. No. 10,113,429

LIQUID-CAPTURING SHAFT

ROLLS-ROYCE plc, London ...

1. A liquid-capturing shaft, the shaft being hollow, arranged for rotation about a longitudinal axis of the shaft, comprising:a wall defining an innermost surface and an outermost surface of the shaft and through which are formed a plurality of circumferentially spaced apart inlet openings; and
each inlet opening having a respective capture surface which extends from the outermost surface of the shaft and through the innermost surface of the shaft, such that the capture surface extends through the wall along a plane that extends obliquely with respect to the longitudinal axis.

US Pat. No. 10,113,428

FLOW ROTOR, IN PARTICULAR TURBINE WHEEL

BorgWarner Inc., Auburn ...

1. A radial flow exhaust gas turbocharger turbine wheel (1) having a turbine wheel hub (2, 3) and turbine wheel blades (7), the turbine wheel hub (2, 3) having a wheel hub axis,wherein said turbine wheel is adapted for receiving a radially directed flow of exhaust gas and converting exhaust energy into rotational energy for driving a compressor wheel,
wherein the turbine wheel hub includes a turbine wheel hub core (2) and a turbine wheel hub outer part (3) which radially surrounds the turbine wheel hub core (2)
the turbine wheel hub core (2) being coaxial with said wheel hub axis, having a bell-shaped cross-section having a base and a peak,
and
the turbine wheel outer part (3) shaped for redirecting radially directed inflow to axial outflow the turbine wheel blades (7) extending outward from the hub outer part (3) and axially located between said base and said peak,
wherein the turbine wheel hub core (2) is made of a nickel-based alloy and the turbine wheel hub outer part (3) and turbine blades (7) are made of titanium aluminide or ceramic.

US Pat. No. 10,113,427

VANE HEAT ENGINE

1. A vane motor comprising:a housing comprising a fixed outer wall having:
an entrance face;
a ledge face;
an expansion face;
a return face;
an exit face; and
an annular face;
a rotor;
an expansion chamber wall, said expansion chamber wall having an axial length wherein said expansion chamber wall is flexible along the axial length, said expansion chamber wall being fixed in position relative to said entrance face and variable in position relative to said return face.

US Pat. No. 10,113,426

STATOR FOR AN ECCENTRIC SCREW PUMP

1. A stator for an eccentric screw pump, the stator comprises:a stator body, the stator body comprising:
an accommodation hole configured for accommodating a rotor;
a tubular elastomer body reinforced at least in sections with a thread inlay and having an axial first end and an axial second end opposite the axial first end;
a first end piece; and
a second end piece,
wherein:
the tubular elastomer body forms an outer surface of the stator body;
the first axial end is secured to the first end piece; and
the second axial end is secured to the second end piece.

US Pat. No. 10,113,424

MILLING TOOL HOLDER

Caterpillar Paving Produc...

1. A tool holder configured to be coupled to a tool mounting block of a milling drum comprising:a cylindrical body defining a first end configured to be received within the tool mounting block of the milling drum and the cylindrical body defining a second end, the second end configured to receive a cutting bit;
a flange located between the first end and the second end with respect to an axial direction;
a first bore with a first opening defined by the second end, the first bore extending along the axial direction towards the first end;
a frustoconical portion located between the flange and the first end with respect to the axial direction;
an elliptical portion located between the flange and the first end with respect to the axial direction; and
a recessed region in a wall of the cylindrical body located between the frustoconical portion and the elliptical portion.

US Pat. No. 10,113,423

SYSTEMS AND METHODS FOR MONITORING A FLUID SYSTEM OF A MINING MACHINE

Joy Global Surface Mining...

1. A method of monitoring a lubricant system of a mining machine, the mining machine having an upper zone and a lower zone, the method comprising:initiating an upper lubricant cycle having an upper lubricant cycle time period, the upper lubricant cycle corresponding to the upper zone;
initiating a lower lubricant cycle having a lower lubricant cycle time period, the lower lubricant cycle corresponding to the lower zone;
sensing, at a predetermined time period after initiation of the upper and lower lubricant cycles, a upper pressure level of the lubricant in the upper zone and a lower pressure level of the lubricant in the lower zone;
determining when the upper pressure level is below an upper threshold for the entire duration of the upper lubricant cycle time period;
determining when the lower pressure level is below a lower threshold for the entire duration of the lower lubricant cycle time period; and
outputting an alert in response to at least one selected from a group consisting of:
the upper pressure level being below the upper threshold for the entire duration of the upper lubricant cycle time period, and
the lower pressure level being below the lower threshold for the entire duration of the lower lubricant cycle time period.

US Pat. No. 10,113,422

DETERMINING SPOTTING FLUID PROPERTIES

Saudi Arabian Oil Company...

1. A method, comprising:positioning a member of a test apparatus into a prepared mudcake sample at a specified depth of the mudcake sample, the mudcake sample associated with a drilling fluid and comprising a specified thickness;
pressurizing a spotting fluid in a feeder tank with a pressurized gas stored in a gas tank in fluid communication with the feeder tank;
circulating a pressurized flow of the spotting fluid from the feeder tank to a test cell of the test apparatus to contact the prepared mudcake sample in the test cell of the test apparatus;
soaking the prepared mudcake sample in the spotting fluid for a specified time duration;
subsequent to the specified time duration, detecting, with the test apparatus, a force exerted on the member relative to a displacement distance of the member from the specified depth in the mudcake sample during removal of the member from the mudcake sample;
recording, with the test apparatus, the detected force relative to the displacement distance; and
determining, with the test apparatus, one or more properties associated with the mudcake sample based on the recorded force relative to the displacement distance.

US Pat. No. 10,113,421

THREE-DIMENSIONAL FRACTURE ABUNDANCE EVALUATION OF SUBSURFACE FORMATIONS

Schlumberger Technology C...

1. A method of evaluating fracture abundance in a subsurface formation, the method comprising, using one or more hardware-based processors:defining a fracture network within a plurality of cells of a three-dimensional model of the subsurface formation using a plurality of geometric primitives;
determining an area of the plurality of geometric primitives within at least a subset of the plurality of cells by summing areas of individual geometric primitives within each of the subset of cells, wherein determining the area of the plurality of geometric primitives within the subset of the plurality of cells further includes:
organizing the plurality of geometric primitives within a spatially-organized data structure; and
accessing the spatially-organized data structure when summing areas of individual geometric primitives within each of the subset of cells to determine which of the plurality of geometric primitives are at least partially within each of the subset of cells; and
determining a fracture abundance parameter for the fracture network from the determined area of the plurality of geometric primitives.

US Pat. No. 10,113,419

ELECTROMAGNETIC TELEMETRY USING A TRANSCEIVER IN AN ADJACENT WELLBORE

Halliburton Energy Servic...

1. A system comprising:a downhole transceiver coupled to a well tool that is positionable in a wellbore for transmitting an electromagnetic signal with encoded data;
a first electrode positionable in an adjacent wellbore for receiving the electromagnetic signal and generating a first voltage in response to the electromagnetic signal;
a second electrode positionable in the adjacent wellbore or at a surface of the adjacent wellbore for receiving the electromagnetic signal and generating a second voltage in response to the electromagnetic signal;
a surface transceiver for coupled to a fiber optic cable and configured to determine a decoded version of the encoded data based on a voltage difference between the first electrode and the second electrode;
and
a material coupled to the fiber optic cable and the first electrode for changing a strain on the fiber optic cable in response to the voltage difference between the first electrode and the second electrode,
wherein the material and the first electrode form at least a portion of an electrical circuit that is positionable in the adjacent wellbore and electrically passive, and wherein the electrical circuit has an input impedance that is greater than 1 mega ohm.

US Pat. No. 10,113,418

METHODS AND SYSTEMS FOR SPECTRUM ESTIMATION FOR MEASURE WHILE DRILLING TELEMETRY IN A WELL SYSTEM

SCHLUMBERGER TECHNOLOGY C...

1. A method for configuring transmission signals in a measuring while drilling (MWD) wellbore tool, comprising:receiving at an earth surface, from a transmission of the MWD wellbore tool, a signal from the MWD wellbore tool in a wellbore, wherein the signal comprises a telemetry portion, comprising physical properties of the wellbore measured in the wellbore, and a noise portion;
reproducing the telemetry portion based at least partially on the signal;
subtracting the telemetry portion from the signal;
estimating, based at least partially on the subtraction, the noise portion of the signal; and
altering a transmission configuration of the downhole tool, for further transmitting the signal to the earth surface, based at least partially on the estimated noise portion of the signal.

US Pat. No. 10,113,417

APPARATUSES AND METHODS FOR EVALUATING SYSTEMS USED IN ELECTROMAGNETIC TELEMETRY TRANSMISSIONS

Evolution Engineering Inc...

1. A system for testing connectivity of an EM telemetry receiver to one or more ground conductors, the system comprising:a ground conductor in electrical contact with the ground;
a signal receiver electrically connected to the ground conductor by a link;
a test signal generator configured to generate an electrical test signal and to supply it to the ground conductor by way of the link;
a switch operable to selectively couple the link to the test signal generator or to the signal receiver; and
a meter configured to measure a current flowing from the test signal generator to the linkwherein the electrical test signal comprises a pure tone and the pure tone has a frequency of above 20 Hz.

US Pat. No. 10,113,416

MODELLING TOOL

1. A communication and data processing system for use between one or more employers and one or more system users and one or more system suppliers of the communication and data processing system, at least comprising:a) one or more downhole transmitters configured for providing LWD and/or MWD data,
b) the downhole transmitters communicating via a communication line with one or more computers upstream of the communication line through a data protocol for the transfer of MD and/or MWD data,
c) LWD and/or MWD data being stored locally at the one or more upstream computers,
d) data being transferred locally from the drilling installation to a central hub, the transfer being accomplished by wire or wirelessly via radio transceivers located on the installation and in communication with the central hub,
e) the central hub comprising a WITSML server
f) one or more mathematical models on the WITSML server for calculating an output function Hi(T), where Hi(T) denotes a function for increasing plant time efficiency and T denotes the true time spent in a project, wherein calculating Hi(T) at least includes using the following manipulated parameters:
g) TN: estimated time for completing the project,
T: actual time for completing the project,
Z: selected portion of total project value,
and at least one parameter obtained from the one or more downhole transmitters,
h) wherein, further, an application is implemented on the central hub, the application being configured for receiving parameters from the downhole transmitters comprising LWD and/or MWD data and other parameters relevant for the project, and the application being in direct communication with the mathematical model, or the application comprising the mathematical model,
i) one or more first computers having direct access to the hub and the WITSML server, operated by said one or more system suppliers,
j) one or more second presentation computers in communication with the one or more first computers, the second presentation computers at least receiving output functions Hi(T) from the one or more first computers and the output functions Hi(T) being selectively associated with individual second computers, and
k) wherein one or more system users are associated with the second computers.

US Pat. No. 10,113,414

MULTIPLE MAGNETIC SENSOR RANGING METHOD AND SYSTEM

SCHLUMBERGER TECHNOLOGY C...

1. A method for determining a geometric relationship of a second well with respect to a first well, comprising the steps of:producing a first output from a first 3-axis magnetometer positioned in the second well, the first output responsive to a magnetic field produced by a magnetic field source positioned in the first well;
producing a second output from a second 3-axis magnetometer positioned in the second well, the second output responsive to the magnetic field produced by the magnetic field source, wherein a location of the first 3-axis magnetometer and a location of the second 3-axis magnetometer relative to the magnetic field source are unknown;
calculating the location for each of the first and second magnetometers in the second well with respect to the magnetic field source in the first well; wherein the location of the first magnetometer and the location of the second magnetometer are determined from a plurality of magnetic field components measured by each said magnetometer;
transmitting the locations of the first and second 3-axis magnetometers to surface;
determining the geometric relationship of the second well with respect to the first well; and
reinitiating drilling operations based on the geometric relationship between the first and second wells.

US Pat. No. 10,113,413

METHOD AND APPARATUS FOR DETERMINING WELLBORE POSITION

Nabors Drilling Technolog...

1. A method for determining true vertical depth along a wellbore, the method comprising:determining wellbore inclination, azimuth, and drillstring length at a plurality of static survey points, the determining wellbore inclination further comprising determining wellbore inclination from linear acceleration values determined by one or more sensors for measuring linear and gravitational acceleration;
determining inclination at a plurality of positions between two static survey points using continuous inclination measurements obtained while drilling the wellbore;
determining an interpolated azimuth value along a minimum curvature of a wellbore path at each of the plurality of positions using the azimuth values determined at the static survey points before and after each of the plurality of positions;
determining the drillstring length at each of the plurality of positions; and
using the inclination, azimuth, and measured depth values measured at the static survey points, together with continuous inclination values, corresponding interpolated azimuth values, and measured drillstring length at each of the plurality of positions between static survey points to model the wellbore path and determine a variation in true vertical depth along at least a portion of the wellbore.

US Pat. No. 10,113,412

AXIALLY-SUPPORTED DOWNHOLE PROBES

Evolution Engineering Inc...

1. A downhole assembly comprising:a drill string section having a bore extending longitudinally through the drill string section;
a downhole probe located in the bore of the section;
the probe supported in the bore by first and second spiders each spider comprising a rim, a hub and one or more arms extending between the hub and the rim, the hub formed to provide a bore passing through the hub, the first and second spiders spaced apart longitudinally within the bore, and the rim of at least one of the first and second spiders abutting a landing step in a wall of the bore;
wherein:
at least one of the first and second spiders is axially fixed to the drill string section and to the probe,
the first spider is coupled to an uphole end of the probe, the second spider is coupled to a downhole end of the probe, at least one of the first and second spiders is coupled non-rotationally to the probe and to the drill string section and the probe extends through the bores of the hubs of the first and second spiders such that first and second ends of the probe respectively project past the hubs of the first and second spiders.

US Pat. No. 10,113,411

BOREHOLE IMAGE GAP FILLING

SCHLUMBERGER TECHNOLOGY C...

1. A method, comprising:acquiring a borehole image corresponding to a sidewall surface of a borehole that penetrates a subterranean formation, wherein the subterranean formation comprises structural elements and a varying geophysical characteristic, wherein the borehole image is based on measurement of the geophysical characteristic around circumferential portions of the sidewall surface of the borehole, and wherein the borehole image comprises:
structure corresponding to the structural elements;
texture corresponding to the varying geophysical characteristic; and
coverage gaps in which the structure and texture are missing; wherein the coverage gaps correspond to circumferential portions of the sidewall surface of the borehole for which no measurement of the geophysical characteristic was obtained,
extracting trends from the borehole image, wherein the trends correspond to low pass information of the image and representing the structure;
reconstructing the missing structure within the gaps based on the extracted trends;
simulating the missing texture within the gaps based on the borehole image and the reconstructed structure; and
constructing a fullbore image based on the borehole image, the reconstructed structure within the gaps, and the simulated texture within the gaps.

US Pat. No. 10,113,410

SYSTEMS AND METHODS FOR WIRELESSLY MONITORING WELL INTEGRITY

ONESUBSEA IP UK LIMITED, ...

1. A subsea mineral extraction system, comprising:a subsea wellhead assembly configured to couple to a well;
a first electronic sensor module configured to be disposed in cement in a first annulus of the subsea wellhead assembly, wherein the first electronic sensor module comprises:
a first sensor configured to measure or detect a parameter related to an integrity of the well;
control circuitry configured to generate sensor feedback based on the parameter measured or detected by the first sensor; and
a first transmitter configured to wirelessly transmit the sensor feedback;
a first controller comprising a first receiver configured to wirelessly receive the sensor feedback from the first transmitter of the first electronic sensor module, and wherein the first controller is disposed on an outer annular surface of an outermost string of a plurality of strings of the subsea wellhead assembly; and
a second controller configured to receive the sensor feedback from the first controller and to provide one or more user-perceivable indications based on the sensor feedback, wherein the second controller comprises a processor, a memory, and a model stored on the memory and executable by the processor, wherein the processor is configured to execute the model to predict or estimate the integrity of the well based at least in part on the sensor feedback.

US Pat. No. 10,113,409

BORE MEASURING TOOL

16. A method for measuring a well bore wall comprising:providing a casing in line within a tool string;
displacing an engagement body within a central passage of said casing from a first position to a second position to compress and radially extend a plurality of longitudinally extending biasing elements connected thereto;
recording at least one measurement of the well bore wall with a sensor located on each of said radially extended biasing elements; and
wherein said central passage has a first portion proximate to a first end of said casing and a second portion at a middle thereof, wherein said second portion of said central passage is larger than said first portion.

US Pat. No. 10,113,408

INTEGRATED DRILLING CONTROL SYSTEM

Weatherford Technology Ho...

1. A method of performing controlled pressure drilling of a borehole in a formation with a drilling system according to a drilling plan, the method comprising:configuring, with a computerized control system, a setup of at least the drilling plan, the formation, and the drilling system;
performing the controlled pressure drilling of the borehole in the formation with the drilling system according to the drilling plan by: integrating the setup of the computerized control system with the drilling system, acquiring current data of at least the drilling system, and functioning the drilling system with the computerized control system using the acquired data in an operating mode for operational interaction with the drilling system;
switching, at the computerized control system, from the operating mode to a simulating mode in response to an event anticipated in the drilling operation according to the drilling plan for simulated interaction with the drilling system while continuing the controlled pressure drilling with the drilling system;
simulating the functioning of the drilling system with the computerized control system for a future time period using simulated data in the simulating mode; and
using a result from the simulated interaction in the operational interaction with the drilling system.

US Pat. No. 10,113,407

ELECTROCHEMICAL PRODUCTION OF METAL HYDROXIDE USING METAL SILICATES

Lawrence Livermore Nation...

1. An apparatus for forming metal hydroxide, comprising:a first container that has a top, said first container containing insoluble particles;
a second container that is larger than said first container wherein said first container is located inside of said second container, wherein said first container is a porous container that includes porous container walls that extend entirely around said first container except for said top and wherein said porous container walls are made of a grate having a porosity such that water molecules and ions can pass through said grate but insoluble particles can not pass through said grate and said insoluble particles will be retained within said first container;
a hydroxyl-producing cathode located inside said second container outside of said first container;
hydroxyl ions produced by said hydroxyl-producing cathode;
an acid-producing anode located inside said first container;
acid produced by said acid-producing anode;
a direct current electricity source connected to said hydroxyl-producing cathode and said acid-producing anode;
direct current electricity produced by said direct current electricity source in a direct current electricity path between said hydroxyl-producing cathode and said acid-producing anode;
a metal silicate mass located inside said first container, wherein said metal silicate mass is a metal silicate mass that has been ground, powdered, fractured, or drilled;
metal silicate contained in said metal silicate mass that is contacted by said acid produced by said acid-producing anode, or by said hydroxyl ions produced by said hydroxyl-producing cathode, or by both said acid produced by said acid-producing anode and by said hydroxyl ions produced by said hydroxyl-producing cathode, wherein said metal silicate constitutes pieces or particles composed partly or entirely of metal silicate;
a water solution located inside said first container and said second container, said water solution having an ion concentration, wherein said ion concentration is sufficient to allow said direct current electricity to pass in said direct current electricity path between said acid-producing anode and said hydroxyl-producing cathode; and
wherein said first container that is a porous container with porous container walls is located inside of said second container with said porous container walls inside of said second container, said porous container containing said water solution and containing said acid-producing anode, said metal silicate mass, and said metal silicate wherein said porous container walls are immersed in said water solution inside said first container and said second container, wherein said hydroxyl-producing cathode is located in said second container outside of said first container that is a porous container;
wherein said acid-producing anode and said hydroxyl-producing cathode are at least partially submerged in said water solution;
wherein said direct current electricity is applied across said acid-producing anode and said hydroxyl-producing cathode, said direct current electricity being of sufficient current and voltage to generate said hydroxyl ions at said hydroxyl-producing cathode and generate said acid at said acid-producing anode, said acid or said hydroxyl ions being of sufficient concentration to convert at least some of said metal silicate into metal ions and silicate ions;
wherein said silicate ions react with said acid produced by said acid-producing anode and form silica or silicic acid; and
wherein said metal ions react with said hydroxyl ions produced by said hydroxyl-producing cathode to form the metal hydroxide.

US Pat. No. 10,113,406

PULSED HYDRAULIC FRACTURING WITH NANOSILICA CARRIER FLUID

Saudi Arabian Oil Company...

1. A method of fracturing a reservoir, the method comprising:providing a pad fluid to the reservoir via a wellbore in a well to create fractures in the reservoir;
providing a fracturing fluid to the fractures via the wellbore;
providing a nanosilica carrier fluid to the fractures via the wellbore, wherein the nanosilica carrier fluid comprises nanosilica particles, and providing the nanosilica carrier fluid to the fractures comprises pulsing quantities of the nanosilica carrier fluid into a continuous flow of the fracturing fluid or alternately pulsing quantities of the nanosilica carrier fluid and the fracturing fluid, and an elapsed time between pulsing the quantities of the nanosilica carrier fluid is between 2 seconds and 10 minutes;
activating the nanosilica particles with an activator to yield a nanosilica gel; and
shutting in the wellbore at a wellbore pressure, thereby allowing the nanosilica gel to form proppant pillars in the fractures.

US Pat. No. 10,113,404

IGNITING UNDERGROUND ENERGY SOURCES

Halliburton Energy Servic...

1. An underground gasification system comprising:a recovery system;
a supply line; and
a downhole ignition device operable to ignite an underground energy source, wherein the downhole ignition device is connected to the supply line and the supply line is connected to the recovery system, wherein the downhole ignition device comprises a piezoelectric igniter system, wherein the piezoelectric igniter system comprises a motor, a lance, a shaft, a cam, and a piezoelectric igniter, wherein the lance is a hollow tube, wherein the shaft is disposed within the lance.

US Pat. No. 10,113,403

HEATER AND METHOD OF OPERATING

DELPHI TECHNOLOGIES, INC....

7. A method of operating a heating system, said heating system comprising a plurality of heaters, each of said plurality of heaters comprising 1) a housing, 2) a plurality of fuel cell stack assemblies each having a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent, and 3) a conductor electrically connecting said plurality fuel cell stack assemblies to an electronic controller, said method comprises:a) using said electronic controller and said conductor of one of said plurality of heaters to monitor and control electric current produced by said plurality fuel cell stack assemblies of said one of said plurality of heaters; and
b) using said electronic controller and said conductor of another one of said plurality of heaters to monitor and control electric current produced by said plurality fuel cell stack assemblies of said another one of said plurality of heaters;
wherein step a is performed independently of step b;
wherein said plurality fuel cell stack assemblies are located within said heater housing such that each fuel cell stack assembly of the plurality of fuel cell stack assemblies is spaced axially apart from adjacent fuel cell stack assemblies within said heater housing, and said conductor electrically connects said plurality of fuel cell stack assemblies to said electronic controller, said method further comprising:
c) using said electronic controller and said conductor of said one of said plurality of heaters to monitor and control electric current produced by said plurality of fuel cell stack assemblies of said one of said plurality of heaters; and
d) using said electronic controller and said conductor of said another one of said plurality of heaters to monitor and control electric current produced by said plurality of fuel cell stack assemblies of said another one of said plurality of heaters;
wherein step c is performed independently of step d;
wherein the method further comprises the step of operating said plurality of fuel cell stack assemblies of a given one of said plurality of heaters in series.

US Pat. No. 10,113,402

FORMATION FRACTURING USING HEAT TREATMENT

Saudi Arabian Oil Company...

1. A method for treating a geologic formation, comprising:positioning, in a wellbore, a downhole heating device that is coupled to a downhole conveyance that extends from a terranean surface to a subterranean zone that comprises a geologic formation;
generating, with the downhole heating device, an amount of heat power at a specified temperature between 400° C. and 600° C. and a specified time duration between 30 minutes and an hour to transfer to a portion of the geologic formation in the wellbore;
reducing a static Young's modulus of the geologic formation by about 10 percent based on the generated amount of heat power at the specified temperature; and
generating one or more fractures in the geologic formation based on the generated amount of heat power at the specified temperature and specified duration.

US Pat. No. 10,113,401

APPARATUS AND METHOD EMPLOYING PERFORATING GUN FOR SAME LOCATION MULTIPLE RESERVOIR PENETRATIONS

Saudi Arabian Oil Company...

1. A method of sequentially performing a plurality of perforations at a predetermined downhole interval of a wellbore in a tight reservoir rock formation in order to produce successively deeper penetrations into the rock, the method comprising:a. securing a latch coupling to a stationary length of casing at a predetermined fixed position above and proximate to the interval to be perforated;
b. providing a perforating gun comprised of a plurality of sections where each section contains a plurality of shaped charges positioned in a predetermined array, where the array is the same for each section, and the arrays are axially and radially aligned with each other;
c. securing the perforating gun to the downhole end of a supporting member;
d. securing to the supporting member a plurality of latching tools that correspond in number to the plurality of sections comprising the perforating gun, the latching tools being spaced apart axially on the supporting member of a distance that corresponds to the axial distance between the shaped charge arrays in the sections comprising the perforating gun;
e. lowering the first section of the plurality of sections comprising the perforating gun into position adjacent the predetermined interval to be perforated;
f. releasably engaging with the latch coupling a first latching tool of the plurality of latching tools that is closest to the perforating gun;
g. firing a first series of charges from the first section of the gun to penetrate the reservoir rock along the predetermined interval with a first series of openings;
h. releasing the first latching tool to disengage the tool from the latch coupling and lowering the gun to engage the adjacent latching tool with the latch coupling to position a second section of the plurality of sections of the perforating gun adjacent the first series of penetrations;
i. firing a subsequent series of charges from the second section of the gun into the formation at the same locations as the first series to provide openings penetrating deeper into the formation than the first series of openings, and
j. repeating steps (h) and (i) until all of the charges in the sections comprising the perforating gun have been fired.

US Pat. No. 10,113,400

SEQUENTIAL FULLY IMPLICIT WELL MODEL WITH TRIDIAGONAL MATRIX STRUCTURE FOR RESERVOIR SIMULATION

Saudi Arabian Oil Company...

1. A computer implemented method of forming a model of determined well completion rates of component fluids of a subsurface reservoir from measured total well production by reservoir simulation of well production, at a time step during life of the subsurface reservoir, from a plurality of vertical wells in the subsurface reservoir with a coupled well reservoir simulator model, the reservoir simulator model having formation layers having unknown formation pressures and completion rates at the time step, the formation layers comprising vertical fluid flow layers having vertical fluid flow therefrom and flow barrier layers with no vertical fluid flow therefrom, the coupled well reservoir simulator model being organized into a plurality of cells including a plurality of well cells at locations of the vertical wells in formation layers of the reservoir, and a plurality of reservoir cells adjacent the well cells and the reservoir cells of the formation layers having unknown formation pressures, transmissibilities and completion rates at the time step, the method comprising the computer implemented steps of:forming a reduced system model of the plurality of vertical wells consisting of:
interval well cells between flow barrier layers of the reservoir assembled by combining vertically disposed well cells of the vertical flow formation layers having vertical fluid communication therebetween and being located between flow barrier layers in the coupled reservoir model; and
reservoir cells adjacent the interval well cells;
solving the reduced system model for bottom hole pressures of the plurality of wells;
solving by reservoir simulation the coupled well reservoir model of well cells and reservoir cells for layer completion rates of component fluids of the well cells of each of the formation layers of the coupled well reservoir model at the time step, based on a steady state volume balance relationship of the layer completion rates, formation pressures and transmissibilities, and treating the plurality of wells as having the determined bottom hole pressure;
determining a simulator total well production rate for the plurality of wells from the layer completion rates of the component fluids of the formation layers of the coupled reservoir model of the well at the time step;
comparing the simulator total well production rate for the plurality of wells with the measured total well production at the time step to determine if simulator convergence is achieved; and, if so,
forming a record of the layer completion rates of the component fluids for the layers at the well cells and of the determined total well production rate for the plurality of wells at the time step; and
if the results of the step of comparing indicate convergence is not achieved, iterating to the step of solving by reservoir simulation the coupled well reservoir model, determining a simulator total well production rate for the plurality of wells from the well completion rates of the component fluids, and comparing.

US Pat. No. 10,113,399

DOWNHOLE TURBINE ASSEMBLY

NOVATEK IP, LLC, Provo, ...

1. A downhole turbine assembly, comprising:a drill pipe capable of passing a fluid flow there through;
a turbine disposed within a sidewall of the drill pipe, the turbine including a plurality of blades having flat surfaces, at least one blade of the turbine including polycrystalline diamond;
a course capable of diverting a portion of the fluid flow to the turbine; and
an outlet capable of discharging the diverted portion of the fluid flow from within the drill pipe to an exterior of the drill pipe.

US Pat. No. 10,113,398

FUEL CELL APPARATUS AND METHOD FOR DOWNHOLE POWER SYSTEMS

SCHLUMBERGER TECHNOLOGY C...

1. A method for generating electricity in a drill string disposed within a wellbore, wherein the drill string comprises a turbine, a generator, and a fuel cell system, the method comprising:(i) generating electricity using the fuel cell system, wherein the fuel cell system generates electricity by producing an electrochemical reaction between hydrogen and oxygen within a fuel cell stack, wherein the fuel cell stack comprises: a first electrode; a second electrode; a proton exchange membrane located between the first electrode and the second electrode; and at least one water storage medium located between the proton exchange membrane and the second electrode;
(ii) retaining water produced by the electrochemical reaction within the fuel cell stack;
(iii) stopping the electrochemical reaction within the fuel cell stack;
(iv) circulating drilling mud through the wellbore;
(v) generating electricity using the generator, the turbine, and the circulating drilling mud; and
(vi) generating hydrogen and oxygen within the fuel cell stack by using the electricity generated in process (v) to electrolyze the water produced in process (i) and retained in process (ii).

US Pat. No. 10,113,397

PROPULSION GENERATOR AND METHOD

Coil Solutions, Inc., Ca...

1. A propulsion generator for use in a downhole tool to urge movement of a string of pipe within a well bore, said string of pipe comprising a bottom end portion, comprising:an outer tubular housing mountable to said bottom end portion of said string of pipe, said outer tubular housing including:
a plurality of fly wheel housings, wherein each fly wheel housing defines a fluid flow path through each fly wheel housing to permit a fluid to flow through a downhole tool, wherein the fluid flow path includes at least one of a chamber and a tubular configured to provide a laminar flow to the fluid therethrough;
at least one fly wheel positioned within said each fly wheel housing, said at least one fly wheel comprising a center of mass;
a plurality of fins operatively connected to said at least one fly wheel and positioned within said fluid flow path and configured to receive energy from the fluid flowing through said flow path whereby said at least one fly wheel is rotated, said plurality of fins being rotatable as said at least one fly wheel rotates; and
a mounting for said at least one fly wheel which constrains a center of rotation of said at least one fly wheel, whereby said center of mass of said at least one fly wheel is offset from the center of rotation, which results in vibrations being created during rotation of said at least one fly wheel.

US Pat. No. 10,113,393

SYSTEMS AND APPARATUSES FOR SEPARATING WELLBORE FLUIDS AND SOLIDS DURING PRODUCTION

Heal Systems LP, Calgary...

1. A process for producing reservoir fluids from a reservoir disposed within a subterranean formation, comprising:producing gas-depleted reservoir fluid from the reservoir via a production string disposed within a producing wellbore, wherein the producing comprises, via a flow diverter:
receiving reservoir fluid flow from a downhole wellbore space,
conducting the received reservoir fluid flow uphole,
discharging the received reservoir fluid flow into an uphole wellbore space such that, while the discharged reservoir fluid flow is disposed within the uphole wellbore space, gaseous material is separated from the discharged reservoir fluid flow in response to at least buoyancy forces, such that a gas-depleted reservoir fluid flow is obtained,
receiving and conducting the gas-depleted reservoir fluid flow, and
discharging the conducted gas-depleted reservoir fluid flow,
wherein:
the flow diverter comprises an insert-receiving part and a flow diverter-effecting insert,
the insert-receiving part comprises a passageway, and
the flow diverter-effecting insert is disposed within the passageway and releasably coupled to the insert-receiving part via a coupler disposed within the production string;
conducting the discharged gas-depleted reservoir fluid to a pump;
pressurizing the gas-depleted reservoir fluid with the pump such that the gas-depleted reservoir fluid is conducted to the surface;
uncoupling the flow diverter-effecting insert from the coupler;
displacing the flow-diverter-effecting insert, relative to the insert-receiving part, such that the coupler becomes disposed for coupling to a plug; and
after the displacing, deploying a plug downhole, and coupling the plug to the coupler such that a flow of material uphole of the plug is prevented, or substantially prevented.

US Pat. No. 10,113,392

TUBING PRESSURE INSENSITIVE SURFACE CONTROLLED SUBSURFACE SAFETY VALVE

Halliburton Energy Servic...

1. A hydraulic control system for controlling operation of a downhole valve comprising:a rod piston disposed within a housing,
wherein the rod piston and the housing form a first piston chamber, a second piston chamber and a third piston chamber, wherein a first piston chamber volume of the first piston chamber and a third piston chamber volume vary inversely as the rod piston is moved from one position to another in the housing;
a high tubing pressure branch, wherein the high tubing pressure branch delivers pressure to the first piston chamber, wherein the first piston chamber is between a first seal on a first distal end of the rod piston and a wall of the housing;
a single control line directed into the second piston chamber and a first storage chamber branch, wherein the single control line delivers a surface pressure to the second piston chamber, wherein the second piston chamber is between the first seal and a second seal on a first side of a middle portion of the rod piston, wherein the first storage chamber branch fluidically couples a first compartment of a storage chamber and the second piston chamber to maintain the first compartment and the second piston chamber at a first pressure;
a second storage chamber branch, wherein the second storage chamber branch fluidically couples a second compartment of the storage chamber and the third piston chamber, wherein a second pressure of the second compartment of the storage chamber is directed to the third piston chamber through the second storage chamber branch, wherein a compressible fluid maintains the second compartment of the storage chamber and the third piston chamber at a same pressure, and wherein the first compartment and the second compartment comprise a compressible fluid or a compressible gas; and
a flow tube coupled to the rod piston and a flapper,
wherein the flow tube moves between a first position and a second position in response to movement of the rod piston, and
wherein movement of the flow tube between the first position and the second position is operable to at least one of open the flapper and close the flapper.

US Pat. No. 10,113,391

RETRIEVABLE BACK PRESSURE VALVE AND METHOD OF USING SAME

1. A retrievable back pressure valve for use with a horizontal well completion operations during drilling out plug procedures comprising:a tool with a first end, a second end and a passageway there through wherein said tool is adapted to be removably positioned in a drill string profile nipple in said horizontal well;
at least one flapper valve positioned in said tool said passageway adapted to allow fluid to flow downhole of said horizontal well through said tool said passageway and prevent said fluid from traveling up said horizontal well through said tool said passageway; and
a releasable positioning mechanism attached to said tool for positioning said tool in said drill string profile nipple and adapted to release said tool from said drill string profile nipple when a ball is dropped down said horizontal well and enters said tool.

US Pat. No. 10,113,390

VALVE FOR GRAVEL PACKING A WELLBORE

SCHLUMBERGER TECHNOLOGY C...

1. A downhole tool, comprising:a housing comprising a screen; and
a valve system positioned within the housing, the valve system comprising a first valve and a flow control device, wherein the valve system has a first position where the first valve allows a flow within the housing, a second position where the first valve directs at least a portion of the flow through the flow control device, and a third position stopping flow through the flow control device; and
wherein the valve system further comprises an intermediate tubular member positioned between the housing and a base pipe, wherein the intermediate tubular member has a first opening formed radially-therethrough.

US Pat. No. 10,113,389

CRACK-RESISTANT CEMENT COMPOSITION

Halliburton Energy Servic...

1. A method of cementing in a subterranean formation comprising:introducing a cement composition into the subterranean formation, wherein the cement composition comprises:
(A) cement;
(B) water; and
(C) an additive comprising zirconium dioxide, wherein at least 60% of the zirconium dioxide is in a metastable tetragonal phase during the step of introducing, and wherein some or all of the zirconium dioxide that is in the metastable tetragonal phase transforms to a stable monoclinic phase after a stress is applied to the cement composition;
allowing or causing to allow the cement composition to set;
allowing or causing to allow the stress to induce a crack in the set cement composition; wherein the stress further induces at least a portion of the zirconium dioxide that is in the metastable tetragonal phase to transform to the stable monoclinic phase; wherein this transformation reduces the size of at least one dimension of the crack.

US Pat. No. 10,113,388

APPARATUS AND METHOD FOR PROVIDING WELLBORE ISOLATION

HALLIBURTON ENERGY SERVIC...

1. An actuatable wellbore isolation assembly comprising:a housing generally defining an axial flowbore and comprising a mandrel portion, a first end portion, and a second end portion, the mandrel portion being movable relative to the second end portion so that the housing has a variable length;
a radially expandable isolating member positioned circumferentially about a portion of the housing;
a sliding sleeve circumferentially positioned about a portion of the mandrel of the housing, the sliding sleeve being configured to be movable between:
a first position in which the sliding sleeve retains the expandable isolating member in a narrower non-expanded conformation; and
a second position in which the sliding sleeve does not retain the expandable isolating member in the narrower non-expanded conformation;
an actuator assemblage configured to move the sliding sleeve from the first position to the second position; and
a locking mechanism engaged to retain the sliding sleeve in the first position and disengageable to allow movement of the sliding sleeve between the first position and the second position,
wherein movement of the mandrel portion relative to the second end portion disengages the locking mechanism to thereby allow the actuator assemblage to move the sliding sleeve from the first position to the second position.

US Pat. No. 10,113,385

PRODUCTION SYSTEM AND TENSION HANGER

Cameron International Cor...

11. A well production system for producing fluids from a well, the system comprising:a wellhead component;
a hanger system comprising:
a hanger body comprising an inner bore extending therethrough along an axis;
an inner mandrel comprising an exterior surface comprising a slot, the slot comprising an axially oriented portion that terminates and the slot continues into either an azimuthally oriented portion or a helically oriented portion extending from the axially oriented portion, the inner mandrel being passable from the hanger body inner bore; and
wherein the inner mandrel is movable into a landed position by axial and rotational movement of the inner mandrel relative to the hanger body, the axial and rotational movement being guided by the slot; and
a production tubing string attachable to the inner mandrel and extendable into the well.

US Pat. No. 10,113,384

MULTI-METAL SEAL SYSTEM

Cameron International Cor...

1. A system, comprising:a first tubular;
a second tubular, wherein the first and second tubulars are configured to be disposed one inside another about an axis;
a multi-metal seal system configured to seal an annular space between a first surface of the first tubular and a second surface of the second tubular, wherein the multimetal seal system comprises:
a first metal seal portion with a first angled surface and a second angled surface;
a second metal seal portion with a third angled surface; and
a third metal seal portion with a fourth angled surface;
wherein the first angled surface selectively engages the third angled surface at a first angled interface and the second angled surface selectively engages the fourth angled surface at a second angled interface, and wherein the first and second angled interfaces are configured to drive the first metal seal portion only in a first radial direction relative to the axis and seal radially against the first surface, drive the second metal seal portion only in a second radial direction relative to the axis and seal radially against the second surface, and drive the third metal seal portion only in the second radial direction relative to the axis and seal radially against the second surface.

US Pat. No. 10,113,382

ENHANCED HYDROCARBON WELL BLOWOUT PROTECTION

1. An apparatus to protect from accidental blow out from a hydrocarbon well, the apparatus comprising:a sealable pipe adaptor mounted directly on a hydrocarbon well head, the sealable pipe adaptor including:
a central branch used for a drilling operation, the central branch having a first valve that is normally open and controllable during the drilling operation, the first valve containing a first sensor that is a shut-off sensor that shuts the first valve when a gush of oil or gas flow above a first preset safety threshold is detected,
a first side branch, having a second valve that is controllable during the drilling operation and during a production mode, the second valve having a second sensor that opens the second valve when detecting a rogue hydrocarbon flow so that the rogue hydrocarbon flow is directed through the first side branch the first side branch being connected to storage, and
a second side branch connected to a production pipe, the second side branch having a third valve controllable from a production collection terminal, the third valve being normally closed during the drilling operation and being normally open during the production mode, the third valve containing a third sensor that is a shut-off sensor that shuts the third valve when a gush of oil or gas flow that is above a second preset safety threshold is detected.

US Pat. No. 10,113,380

PUMPING SYSTEM DEPLOYMENT USING CABLE

SCHLUMBERGER TECHNOLOGY C...

1. A method for deploying a pumping system, comprising:moving a coiled tubing injector head into position over a wellhead positioned above a wellbore of a well;
routing an electrical cable through the coiled tubing injector head and through a tree assembly positioned above the wellhead;
coupling the electrical cable to an electric submersible pumping system beneath the coiled tubing injector head; and
using the coiled tubing injector head to deploy the electrical cable and to thus lower the electric submersible pumping system downhole into the wellbore beneath the wellhead without coiled tubing; and
wherein moving comprises coupling the coiled tubing injector head to an adjustable system located adjacent the wellhead, wherein the adjustable system is configured to selectively lift or lower the coiled tubing injector head and the tree assembly relative to the wellhead.

US Pat. No. 10,113,379

METHOD OF ASSEMBLY OF A STRING OF ELEMENTS FOR DEEPWATER DRILLING AND ULTRADEEP OBSTRUCTION ELEMENT AND CORRESPONDING USE OF THE SAME IN SAID DRILLING STRING

DRILLMEC S.P.A., Gariga ...

1. A method of assembly of a string of drilling elements for deep water drilling, wherein a depth of a body of water is at least 550 meters;each drilling element including at least one axial through hole, through which drilling mud can flow in at least a first direction, and two connection portions for connecting the drilling element in series in said string;
the method comprising the following steps:
a) assembling a lower portion of the string as a bottom hole assembly;
b) providing at least one first drilling element;
c) assembling said at least one first drilling element with another one of said at least one first drilling element to begin the assembly of first drilling elements to create a first section of the string directed towards a bottom or bed of the body of water, where a blowout preventer is located;
d) repeating said steps b)-c) to create the first section of the string until said lower portion is in proximity of the blowout preventer or until said lower portion is in proximity of the bottom or bed, and the string having a length of at least 550 meters;
e) beginning the assembly of second drilling elements while a drilling apparatus is carrying out a drilling cycle, for creating at least a second section of the string used in conjunction with the first section of the string during the drilling cycle;
f) repeating said step e) until the second section of the string has reached an extension length at least equal to a desired drilling depth of a drilling well;
g) assembling at least one third drilling element, the at least one third drilling element comprising at least one obstruction element for preventing a backflow from being generated against the first direction of drilling mud in said string;
wherein said step g) of assembling at least one third drilling element is carried out after said step a) of assembling a lower portion of the string and before said step b) of providing at least one first drilling element.

US Pat. No. 10,113,377

DRIVE SYSTEMS FOR USE WITH LONG LATERAL COMPLETION SYSTEMS AND METHODS

12. A method for preventing rotational movement of a drive mechanism in a rig carrier during operation thereof, the method comprising the steps of:obtaining the rig carrier comprising a mast assembly and a Y-base comprising a support plate, wherein the mast assembly is pivotally mounted to the rig carrier on an upper end of a first rail of the Y-base, wherein the mast assembly comprises a first guide rail and a second guide rail, wherein the mast assembly is movable between a lowered position and a raised position, wherein the mast assembly is supported by the support plate in the raised position, wherein a plurality of crown sheaves are mounted to a top of the mast assembly, wherein the mast assembly further comprises a top drive and a pipe arm comprising a clamp, and wherein the clamp is operable to transfer at least one tubular member from the pipe arm to the top drive;
securing the drive mechanism to a top drive fixture within the mast assembly, wherein the drive mechanism comprises a drive shaft that is on a lower end of the drive mechanism and that is configured to extend toward the rig carrier, and comprises a swivel part on an opposite, upper end of the drive mechanism, wherein the top drive fixture comprises a first guide frame configured to engage the first guide rail at a first location above the drive mechanism, a second guide frame configured to engage the second guide rail at a second location above the drive mechanism, at least one extension that holds the drive mechanism below the first location and the second location, and a first flange that attaches the at least one extension to the first guide frame continuously along a length of the at least one extension from a top connection point at a base of a traveling block frame and above a top-most end of the swivel part to a bottom connection point below the swivel part;
moving the top drive fixture by using a plurality of traveling sheaves mounted within the traveling block frame and operably connected to the top drive fixture with the plurality of crown sheaves to move the top drive fixture;
engaging the at least one extension of the traveling block frame with the first guide frame;
engaging the drive mechanism secured to the top drive fixture; and
operating the drive mechanism to provide a rotational force to the tubular member, wherein contact between the drive mechanism, the first guide frame, the second guide frame, the first guide rail, the second guide rail, or combinations thereof prevents rotation of the drive mechanism.

US Pat. No. 10,113,376

CONVEYOR APPARATUS

Stimline AS, Kristiansan...

1. A conveyor apparatus to enable feeding of a continuous elongate device down through the conveyor apparatus to enable insertion of tools through a wellhead and a well below or up through the conveyor apparatus by pulling action enabling retrieval of the tool from the wellhead and the well below, the conveyor apparatus comprising:an apparatus frame;
a pair oppositely located, co-operatively movable, segmented continuous belts installed in the apparatus frame, each belt comprising a plurality of interconnected device gripper shoe carriers carried and movable via a pair of continuous belt drive chains running over respective pairs of chain drive sprockets;
wherein each carrier has a front side and a rear side;
wherein the rear side of the carrier has at least one roller configured to roll about a shaft attached to the carrier against an elongate counter-force member associated with the frame and extending between said drive sprockets;
wherein a device gripper shoe is located at the front side of each carrier; and
wherein the shaft of the at least one roller is resiliently supported transversely of said shaft's longitudinal axis via a plurality of resilient members at spaced apart locations along a length of said shaft, said resilient members being fitted in ears that are arranged at the rear side of the carrier, said resilient members encircling said shaft and providing movability of said shaft relative to said ears.

US Pat. No. 10,113,375

THREAD COMPENSATION APPARATUS

Nabors Drilling Technolog...

37. A method of threading tubulars, comprising:coupling a thread compensation apparatus having a drive connection interface with an outer portion and an inner rotating portion to a drive apparatus having an outer body and a rotating drive shaft, wherein the inner rotating portion is coupled to the rotating drive shaft;
coupling a tubular gripping apparatus to the thread compensation apparatus;
inserting an extending tubular into the tubular gripping apparatus, wherein the tubular gripping apparatus grips the extending tubular;
retracting an actuator of the thread compensation apparatus so as to cause the thread compensation apparatus to be in a first retracted position;
repositioning the drive apparatus in order to position the extending tubular such that an end of the extending tubular is proximal an exposed end of a top tubular of a string of tubulars;
rotating the drive shaft of the drive apparatus which imparts rotation to the inner rotating portion of the drive connection interface which thereby imparts rotation to a sleeve and the lower shaft, wherein the lower shaft further imparts rotation to the tubular gripping apparatus and the extending tubular;
threading the extending tubular to the top tubular, wherein the actuator is caused to extend to displace the lower shaft relative to the sleeve to compensate for threading displacement as the extending tubular is threaded to the top tubular; and
displacing the drive apparatus such that the weight of the string of tubulars is supported by the drive apparatus.

US Pat. No. 10,113,374

DEVICE AND METHOD FOR HANDLING DRILL STRING COMPONENTS IN A DRILL RIG AND DRILL RIG

12. A method for handling drill string components in respect of a drill rig, the method comprising:gripping with a gripper, a first drill string component, to be threaded on to or off from a second drill string component being part of a drill string which is partly drilled into a rock formation,
maneuvering a handling unit which is movably connected to a support, and which includes said gripper, between a drill string position, in which a gripped first drill string component is positioned for threading on to and off from said second drill string component and a loading position, wherein the first drill string component can be brought into or taken out from said gripper,
bringing an auxiliary engagement unit included in the handling unit to engage said second drill string component in the drill string position,
guiding said gripped first drill string component through said auxiliary engagement unit and aligning the gripped first drill string component to be essentially in line with a longitudinal axis direction defined by said second drill string component, and
allowing said gripper and thereby said gripped first drill string component said alignment through allowing variation of angle of said gripped first drill string component in respect of said support in order to allow alignment of the first drill string component in the drill string position,
wherein said auxiliary engagement unit engages portions of the second drill string component, said portions being positioned at a longitudinal axial distance from each other, and
wherein play or flex or yieldingness between parts of a divided support arm being positioned between said support and said gripper.

US Pat. No. 10,113,372

CENTRALIZER

WEATHERFORD TECHNOLOGY HO...

14. A centralizer, comprising:a body having a bore therethrough;
a first collar coupled to the body;
a second collar coupled to the body; and
a plurality of bow springs coupled to the first collar and the second collar, wherein a cross-section of the bow springs includes an arcuate outer surface and a flat inner surface.

US Pat. No. 10,113,371

DOWNHOLE CONTROL LINE CONNECTOR

Halliburton Energy Servic...

1. A connector of a wellbore completion, the connector comprising:a housing having a conduit chamber defined therein between a body and a shroud;
a matable connector at least partially disposed within the housing and providing a mating face that faces with respect to the housing so as to angularly engage and mate with an opposing matable connector, the matable connector including one or more communication media disposed within the conduit chamber and extending to the mating face; and
one or more tubular conduits extending helically from the mating face into the conduit chamber and wrapping helically around the body.

US Pat. No. 10,113,370

FLUID FLOW CONTROL DEVICE

Halliburton Energy Servic...

1. A downhole fluid flow control apparatus comprising:a substantially tubular housing having an inner diameter and an outer diameter;
the inner diameter having a profile defined by one or more contour lines; and
a plurality of circular orifices defined on the tubular housing, wherein a first contour line of the one or more contour lines is operable to direct a fluid into the plurality of circular orifices and a second contour line of the one or more contour lines is operable to direct a fluid away from the plurality of circular orifices.

US Pat. No. 10,113,368

CUTTING ELEMENTS, EARTH-BORING TOOLS INCORPORATING SUCH CUTTING ELEMENTS, AND METHODS OF FORMING SUCH CUTTING ELEMENTS

Baker Hughes Incorporated...

1. A cutting element, comprising:a substrate;
a thermally stable polycrystalline table comprising interbonded grains of a superhard material and interstitial spaces among the interbonded grains of the superhard material, the thermally stable polycrystalline table being at least substantially devoid of catalyst material used to form intergranular bonds among the interbonded grains of the superhard material;
a substrate portion interposed between the thermally stable polycrystalline table and the substrate; and
a metal material attaching the substrate to the substrate portion, the metal material extending from proximate the substrate, through the substrate portion, and partially into the thermally stable polycrystalline table, the metal material exhibiting a melting temperature of less than 1320° C.

US Pat. No. 10,113,367

SLIDE REAMER AND STABILIZER TOOL

Dynomax Drilling Tools In...

1. A method of reaming a wellbore, comprising:moving a downhole tool on a drill string axially through a wellbore without rotation of the drill string, wherein the downhole tool comprises an elongate main body having:
(a) a longitudinal axis;
(b) an outer surface and a central bore; and
(c) a plurality of channels formed into said outer surface, said channels dividing the main body into a plurality of blade sections corresponding in number to the number of channels;
wherein each of at least two of the blade sections has one or more cartridge pockets formed into the outer surface thereof, each cartridge pocket being configured to receive a tool cartridge housing a tool insert such that the tool insert is confined to rotate by a side wall about a rotational axis transverse to, and offset from, the longitudinal axis of the main body, wherein the downhole tool forms a slide reamer and at least one of the tool inserts is a reamer insert having a plurality of cutting elements,
the reamer insert rotating as the downhole tool moves axially through the wellbore drilling fluid is circulated through the elongate main body.

US Pat. No. 10,113,366

INTERGLAND GREASE

Halliburton Energy Servic...

1. A roller cone drill bit comprising:a bit body having at least one support arm extending therefrom;
a cone assembly containing bearings or retaining balls and rotatably mounted on a journal extending from each support arm;
at least two seals disposed in grooves formed in the cone assembly and each preventing debris and well fluids from entering an annular gap formed radially between the cone assembly and the journal;
a lubricant chamber disposed in each support arm and fluidly coupled to at least one seal;
a floating bead defining an exterior section and an interior section of a bore and in sealing engagement with the bore such that the exterior section and interior section of the bore are not in fluid communication; and
an intergland grease disposed at least in an annular gap between the seals, wherein the intergland grease comprises a base grease and a lubricating intergland grease additive, but comprises no extreme pressure additive, and wherein the interior section of the bore is included as part of the lubricant chamber.

US Pat. No. 10,113,361

SAFETY MECHANICAL BARRIER AND SYSTEM FOR ABOVE-GROUND POOL LADDERS

POLYGROUP MACAU LIMITED (...

14. The safety mechanical barrier of claim 1, wherein the at least one attachment mechanism is adapted for releasably attaching the safety mechanical barrier to the first vertical rail of the pool ladder.

US Pat. No. 10,113,358

WINDOW BLINDS WITH EXTENDABLE EDGES

Ristal, Inc., Tempe, AZ ...

1. A window shade comprising:a top rail;
a shade body extending down from the top rail and comprised of a plurality of collapsible tubular cells stacked to form a vertical shade, each of the tubular cells having at least one open distal end;
an insert comprised of a second plurality of collapsible cells and separable from the shade body, the second plurality of collapsible cells freestanding at one end and comprising connections at a distal end between adjacent cells of the second plurality of collapsible cells, each of the second plurality of collapsible cells configured to extend into a respective one of the plurality of collapsible tubular cells, wherein the insert extends a distance beyond the distal end of the shade body to increase an effective width of the window shade, and wherein the second plurality of collapsible cells is configured to be moved independently of and in unison relative to the shade body to vary the distance.

US Pat. No. 10,113,354

MULTIPLE-PANE INSULATING GLAZING UNIT ASSEMBLY, GAS FILLING, AND PRESSING MACHINE

Cardinal IG Company, Ede...

1. A system for producing multiple-pane insulating glazing units, the system comprising: a conveyor and a machine that assembles two or more glazing panes and one or more glazing spacers into a multiple-pane insulating glazing unit, the conveyor comprising a longitudinally extending conveyor line configured to transport the two or more glazing panes to the machine, the machine comprising a plurality of laterally spaced-apart processing stations, each processing station being movable transversely, along a transverse axis, relative to the longitudinally extending conveyor line to provide one of the plurality of laterally spaced-apart processing stations that is aligned with the longitudinally extending conveyor line while at least one other of the plurality of laterally spaced-apart processing stations is out of alignment with the longitudinally extending conveyor line, said at least one other of the plurality of laterally spaced-apart processing stations when out of alignment with the longitudinally extending conveyor line being operable to process the two or more glazing panes and one or more glazing spacers therein to fabricate the multiple-pane insulating glazing unit, wherein each of the plurality of laterally spaced apart processing stations comprises a processing zone located between two platens, wherein each processing zone is configured to receive the two or more glazing panes and one or more glazing spacers.

US Pat. No. 10,113,353

HIGH SPEED DOOR

ASSA ABLOY ENTRANCE SYSTE...

1. A high-speed door for closing or opening an opening formed in a wall, the door comprising:a bearing structure to which is attached a flexible curtain and a drive system enabling the curtain to be moved from a closed position into an open position in which the curtain is concertina-folded into a top of the opening, wherein the bearing structure comprises two cross-sectional U-shaped vertical uprights each comprising a web and two flanges extending perpendicularly from opposite ends of the web between which the curtain is folded, each U-shaped vertical upright being formed of a plurality of one-piece upright section pieces, wherein at least one one-piece section piece incorporates at least one cavity oriented in a longitudinal direction of the section piece;
a lintel comprising a plurality of lintel section pieces each incorporating at least one cavity oriented longitudinally, said lintel enclosing a shaft used to operate the flexible curtain; and
an attachment arrangement disposed on at least one of the upright section pieces and configured for fastening a secondary piece thereto, the attachment arrangement comprising:
a respective male attachment portion disposed on each of the flanges on one side of the at least one upright section piece opposite from the web and extending perpendicularly relative to the web along a longitudinal axis of the flange; and
two female attachment portions, each disposed on the web at an opposite side of the at least one upright section piece and each arranged collinear with the longitudinal axis of the respective flange;
wherein the male attachment portions are configured to engage a corresponding female attachment portion of the secondary piece and wherein the female attachment portions are configured to engage a corresponding male attachment portion of the secondary piece, and wherein the secondary piece comprises at least one of a second one-piece upright section piece or a finishing section piece.

US Pat. No. 10,113,352

SYSTEM AND METHOD FOR OPERATING A DOCKING STATION

Rite-Hite Holding Corpora...

1. A dock control system comprising:a camera for mounting on a docking station, the camera configured to obtain at least one image of a vehicle restraint system of the docking station;
a graphical user interface configured to display the at least one image of the vehicle restraint system to an operator of the docking station to verify if a vehicle has been restrained; and
a controller configured to:
automatically activate the camera once the vehicle restraint system is engaged with a vehicle;
receive the at least one image of the vehicle restraint system from the camera; and
transmit the at least one image of the vehicle restraint system to the graphical user interface.

US Pat. No. 10,113,351

INTELLIGENT VEHICLE ACCESS POINT OPENING SYSTEM

FORD GLOBAL TECHNOLOGIES,...

1. A method, comprising:detecting a presence of an object in a vicinity of a cover of an access point of a vehicle and inside the vehicle;
receiving a command to open the cover;
activating a mechanism to open the cover responsive to receiving the command;
determining whether the object is likely to fall after the cover has been at least partially opened by:
measuring a relative distance between the object and a sensor on the cover as the cover is being opened; and
determining, based on the relative distance, whether the object is stationary and whether the object is non-stationary and moving toward the cover as the cover is being opened; and
pausing opening of the cover responsive to a determination that the object is likely to fall based on determining that the object is non-stationary and the object is moving toward the cover as the cover was being opened.

US Pat. No. 10,113,349

LOW-NOISE CARRIER ARRANGEMENT

1. A draw-in arrangement (10) comprising a carrier element (31) which is movable back and forth between a fixed park position and an end position, an acceleration and deceleration device (20) with an energy store (81) for drawing the carrier element (31) toward the park position and a pneumatic cylinder-piston unit (61) for decelerating the movement of the carrier element (31) and a carrier (90) which includes a holding recess (95) for accommodating the carrier element (31) and is provided with a stop (91, 92) facing toward the end position and with a carrier surface area (96), and the carrier element (31) has an engagement projection (36) which includes a push surface area (37) which faces away from the park position and which is contactable with the stop (91, 92), whereinthe carrier (90) is provided with a contact layer (97) surrounding at least the carrier surface area (96),
the engagement projection (36) is provided with a carrier element-side delimiting wall layer (51) surrounding the push surface area (37),
both, the wall layer (51) and the contact layer (97), have at least a thickness of 1.5 millimeters, and
both, the wall layer (51) and the contact layer (97), have a mean elasticity modulus at room temperature of between 700 Newton/mm2 and 1600 Newton/mm2.

US Pat. No. 10,113,348

MAGNETIC LEVITATING DOOR

1. A door assembly with a door disposable in front of a door opening and traversable between an open position and closed position, the door assembly comprising:the door being slidable to the open and closed positions, the door defining a length;
two brackets attached to the door, the two brackets being positioned equidistantly on opposed sides of a vertical plane which intersects a center of gravity of the door;
a first magnet attached to each of the first and second brackets, the first magnet having a length less than the length of the door;
a track disposed adjacent to the door opening, the track defining a length about two times the length of the door, the first and second brackets being slidably mounted to the track, the track having opposed inwardly directed fingers;
a second magnet attached to the track, the second magnet having a length greater than a length of the door, the first and second magnets vertically aligned to each other and disposed vertically above stabilizing rollers;
the stabilizing rollers attached to the first and second brackets and disposed within the track, the stabilizing rollers having upper and lower ridges which collectively form grooves that receive the inwardly directed fingers in the grooves for maintaining a vertical position of the door and a vertical gap between the first and second magnets as the door is traversed between the open and closed positions, wherein each stabilizing roller extends horizontally and an axis of rotation of each stabilizing roller extends vertically through the first magnet.

US Pat. No. 10,113,347

DOOR GUIDE SYSTEM WITH MODULAR THRESHOLD TRACK

ASSA ABLOY ENTRANCE SYSTE...

1. A sliding door comprising:a door panel;
a floor guide;
a pin guide assembly connected with a bottom of the door panel;
a guide shoe connected with the pin guide assembly; and
a lock-stop connected with the floor guide;
wherein the guide shoe includes a concave mating surface, wherein the floor guide includes a rail having a convex mating surface shaped to correspond with the mating surface of the guide shoe, wherein the mating surfaces of the guide shoe and floor guide are in sliding contact with one another, wherein the guide shoe further comprises two beveled surfaces on opposing terminal ends of the guide shoe arranged along a direction of travel of the guide shoe along the rail; and wherein at least one of the beveled surfaces of the guide shoe engages with an engagement surface of the lock-stop to prevent the guide shoe from disengaging from the floor guide, such that when the at least one beveled surface is engaged with the engagement surface at least a portion of the beveled surface is between the engagement surface and the floor guide.

US Pat. No. 10,113,346

HINGE, IN PARTICULAR FOR A PIECE OF FURNITURE

JULIUS BLUM GMBH, Hoechs...

1. A hinge comprising:an inner hinge portion to be fixed to a furniture body or to a furniture door pivotably mounted to the furniture body,
an outer hinge portion to be fixed to an outer door, the inner hinge portion and the outer hinge portion collectively having a lower receiving member, an upper receiving member, and a central receiving member, and
a connecting device slideable in an inserting direction into the lower receiving member, the central receiving member, and the upper receiving member so as to pivotably connect the inner hinge portion to the outer hinge portion,
wherein the inner hinge portion has a main body to be fixed to the furniture body or to the furniture door pivotably mounted to the furniture body, and the lower receiving member is slidable in a sliding direction relative to the upper receiving member mounted to the main body, the sliding direction being transverse to the inserting direction of the connecting device.

US Pat. No. 10,113,344

STAY

Sugatsune Kogyo Co., Ltd....

1. A stay comprising:a first member;
a second member connected to the first member so as to be capable of rotating around a rotation axis in two opposing directions relatively;
a disk joined to the first member through a friction plate; and
a cam base capable of rotating around the rotation axis in an integrated manner with the second member, and capable of moving in a direction of the rotation axis through relative rotation of the second member with respect to the first member;
one of the second member and the cam base further comprising a convex part protruding to the other of the second member and the cam base; and
the other of the second member and the cam base further comprising a concave part which fits with the convex part;
wherein, when the second member rotates relative to the first member in one direction, the convex part fits with the concave part deeper, the cam base moves away from the disk in the direction of the rotation axis, and the second member and the cam base rotate relative to the first member and the disk; and
when the second member rotates relatively to the first member in the other direction, an inclined surface of the convex part and an inclined surface of the concave part come into contact, the cam base moves towards the disk in the direction of the rotation axis, and the second member, the cam base and the disk rotate relative to the first member with resistance force.

US Pat. No. 10,113,340

TELL-TALE INDICATOR FOR LOCATING A SECONDARY HOOD LATCH RELEASE

GM Global Technology Oper...

1. An apparatus for aiding an operator having a finger in locating and operating a secondary hood latch release of a secondary hood latch in a gap between a vehicle body and an openable hood having an outer surface, the apparatus comprising:an indicator located directly above the secondary hood latch release and on the outer surface of the openable hood, and configured to display a location of the secondary hood latch release such that the secondary hood latch release is readily locatable and operable by the operator to open the hood:
wherein the secondary hood latch release is operable by reaching into the gap between the body and the openable hood with the finger and applying an operating force in an operating direction to the secondary hood latch release.

US Pat. No. 10,113,339

FUEL DOOR ACTUATOR

Kiekert AG, Heiligenhaus...

1. An actuator for a fuel tank cap in a vehicle comprising:a latch for locking the fuel tank cap;
an electric drive to enable an automatic opening and closing cycle of the fuel tank cap;
a control plate rotatable by the electric drive and having a control contour;
a torque plate having a torque contour that interacts with the control contour by direct contact for transmitting a force and motion to the torque plate, wherein the transmission of force and motion depends on a rotation position of the control plate; and
a mating plate having a mating contour that interacts with the control contour by direct contact, whereby the torque plate transmits the force and motion from the control plate to the mating plate,
wherein the control plate, the torque plate and the mating plate are arranged along a longitudinal axis of rotation of the electric drive or the fuel tank cap.

US Pat. No. 10,113,338

MOTOR VEHICLE DOOR LOCK STATUS SYSTEM AND RELATED METHOD

Ford Global Technologies,...

1. A method of monitoring door lock status of a motor vehicle, comprising:monitoring, by controller, the door lock status of multiple doors of said motor vehicle; and
indicating, by indicator carried on a driver's door of said motor vehicle, the door lock status of said multiple doors of said motor vehicle.

US Pat. No. 10,113,337

LOCKSET

SINOX CO., LTD, New Taip...

1. A lockset, comprising:a first body, including:
a lock body disposed in the first body, wherein the lock body includes a combination lock;
a first upper face having a lock hole; and
a first side face having a positioning hole, wherein there is a first angle between the first upper face and the first side face; and
a second body, including:
a second upper face, wherein the first upper face and the second upper face both face the same direction, wherein a rotatable buckle having a rotating unit and a lock unit is disposed on the second upper face, wherein one end of the rotating unit is pivotally connected with the second upper face and the side of the other end of the rotating unit facing the second upper face is connected with the lock unit; and
a second side face facing the first side face, wherein a positioning unit is disposed in a position on the second side face corresponding to the positioning hole, wherein there is a second angle between the second upper face and the second side face;
when the first side face is in a lock position adjacent to the second side face, the positioning unit inserts into the positioning hole, and the rotatable unit is rotated to insert the lock unit into the lock hole, wherein the lock body restricts the lock unit from leaving the lock hole.

US Pat. No. 10,113,336

ORIFICE FLOWMETER SECURITY DEVICE

Daniel Measurement and Co...

1. A security device for use with an orifice flowmeter and a locking device, the security device comprising: a housing having a top surface, a bottom surface, a closed end, an open end, a front surface, and a back surface forming a cavity, and a first protrusion disposed in the cavity on an interior side of one of the top surface or the bottom surface, the first protrusion further disposed between the front surface and the flowmeter when the security device is secured to the flowmeter; wherein the cavity is exposed at the open end and the back surface, which comprises a cutout forming an upper back surface portion and a lower back surface portion, the upper back surface portion and the lower back surface portion configured to slidingly and releasably engage a gap formed between a nut and a body of the flowmeter when the security device is secured to the flowmeter; wherein the top surface includes a through bore that is coaxial with a through bore of the bottom surface proximate the open end; wherein the top surface through bore and the bottom surface through bore are configured to allow a rod to pass therethrough thereby preventing removal of the security device from the flowmeter; wherein the first protrusion comprises a pair of side walls extending from the closed end of the housing and a channel disposed between the pair of side walls.

US Pat. No. 10,113,334

ELECTRIC STRIKE LOCK

1. An electric strike lock, comprising:a strike body engaged with a cover plate;
a latch having a latch bolt and a deadlatch, said latch engaging a spring and being rotatably disposed inside the strike body together with said spring;
a keeper having a screw hole and a stop block displaceably disposed within the keeper, the stop block being connected to a solenoid which has a movable rod passing through the keeper and engaging the stop block, the stop block being displaced by the solenoid to move between a first position aligned with the deadlatch to block rotation of the latch and a second position unaligned with the deadlatch to allow rotation of the latch; and
an adjusting section including an elliptical adjusting hole formed through the cover plate in correspondence to the screw hole of the keeper, and an elliptical adjusting piece shaped in correspondence to the elliptical adjusting hole, said elliptical adjusting piece having an eccentrically-positioned through hole and an adjusting screw passing therethrough and to threadedly engage the screw hole of the keeper, a major axis of said elliptical adjusting hole extending in correspondence with an operating axis of the solenoid;
the elliptical adjusting piece being inserted into the elliptical adjusting hole in one of two orientations to locate the eccentrically-positioned through hole in a selected one of two locations for correspondingly locating the keeper relative to the solenoid and therewith disposing the stop block initially in either the first position or the second position and thereby set the electric strike lock as being fail-safe or fail-secure.

US Pat. No. 10,113,333

BOLT TO PIN WITH INTERCHANGEABLE COMBINATION

1. A bolt lock consisting of:a housing having:
a base end;
a shaft crossing through the housing, the shaft has a pin on an edge of the shaft, the pin including sections with ridges and sections without ridges;
a top end;
a plurality of cuts located on the top end;
a plurality of dividing walls inside the housing, the main shaft crossed through the dividing walls;
an external roller placed on each one of the cuts, the external rollers are separated by the dividing walls, the external rollers including an internal face and an external face having a plurality of segments separated by slots;
an internal roller placed inside each one of the external rollers, each one of the internal rollers having an internal face, an external face having a faceted edge, a borehole including a groove, the main shaft crossing through each one of the external rollers and the internal rollers;
a support placed on an extension of the base end of the housing, the support has a pivoting movement with a locking device located outside the housing;
a strap located at each one of the slots, the straps are fixed into a strap base anchored to the housing;
wherein when the edge pin of the main shaft coincides with groove of the internal roller, the main shaft slips and unlocks the bolt lock; and
wherein when the edge pin of the main shaft does not coincide with groove of the internal roller, the bolt lock is locked.

US Pat. No. 10,113,332

METHOD FOR INSTALLING DOOR LOCKS

PUNCH POINT TOOLS, L.L.C....

1. A method of installing a latch or bolt plate on a door frame having a door attached to the frame with an extendable and retractable deadbolt with a deadbolt cross sectional shape, comprising the steps of:(a) providing a marking apparatus, the marking apparatus including a marking apparatus shape;
(b) placing the marking apparatus on the latch or deadbolt and aligning the marking apparatus shape with the latch or deadbolt cross sectional shape;
(c) while the marking apparatus is on the latch or deadbolt, closing the door in the door frame;
(d) while the door is closed, causing the latch or deadbolt to extend causing the marking apparatus to be transposed from attachment to the latch or deadbolt to attachment to the door frame;
(e) opening the door and exposing the marking apparatus now attached to the door frame at a location;
(f) using the location of the transposed marking apparatus on the door frame to install a plate on the door frame for receiving the latch or dead bolt.

US Pat. No. 10,113,331

VEHICLE PANEL HANDLE FOR OPENING A PANEL OF AN AUTOMOTIVE VEHICLE

VALEO S.P.A., Santena (I...

1. A vehicle panel handle for opening a panel of an automotive vehicle comprising:a handle lever configured to rotate around a first rotation axis between a resting position wherein the panel is closed and an opening position wherein the panel is open, the first rotation axis being perpendicular to a pivotal plane of the handle lever;
a latch lever configured to rotate around a second rotation axis and to cooperate with the handle lever for opening the panel when the handle lever rotates around the first rotation axis for reaching the opening position, the second rotation axis intersecting the pivotal plane of the handle lever and defines a first vector from the second rotation axis to the first rotation axis;
a counter weight configured for preventing the unwilling rotation of the handle lever, the counter weight is configured to rotate around a third rotation axis between an unblocking position wherein the latch lever is not prevented from rotating, and a blocking position wherein the latch lever is preventing from rotating, the counterweight comprising an elongated body having one end defining the third rotation axis and an opposed end having a weight portion, wherein the weight portion is located between the first rotation axis and the second rotation axis, the third rotation axis intersecting the pivotal plane of the handle lever and defines a second vector from the second rotation axis to the third rotation axis; and
an extension of the handle lever disposed between the second rotation axis and the third rotation axis along a longitudinal direction that is substantially orthogonal to the second vector, wherein the extension of the handle lever is configured to cooperate with a recess or protrusion of the latch lever to rotate the latch lever,
wherein the second rotation axis is disposed between the first rotation axis and the third rotation axis such that the first vector and the second vector form an obtuse angle.

US Pat. No. 10,113,329

EAVE STRUCTURE AND TENT FRAME HAVING SAME

Campvalley (Xiamen) Co., ...

1. An eave structure of a tent frame, wherein the tent frame comprises a supporting pole, a first upper pole, and a second upper pole, the eave structure comprising:a sleeve member configured to be disposed at a first connector of the tent frame;
an eave pole slidably coupled with the sleeve member;
a connecting pole having a first end portion pivotally connected with a first end portion of the eave pole and a second end portion pivotally connected with a sliding connector; and
the sliding connector slidably coupled with the first upper pole and movable along the first upper pole,
wherein:
the first connector is fixedly coupled with an upper end portion of the supporting pole,
a first end portion of the first upper pole is pivotally connected with a hub of the tent frame,
a second end portion of the first upper pole is pivotally connected with a first end portion of the second upper pole, and
a second end portion of the second upper pole is pivotally connected with the first connector.

US Pat. No. 10,113,328

CANOPY ASSEMBLY FOR PROVIDING PRIVACY

1. A canopy assembly structured to provide privacy adjacent to a vehicle, said canopy assembly comprising:a support assembly,
a screen connected to at least a portion of said support assembly,
an attachment assembly comprising at least one attachment structure connected to a portion of said support assembly, said at least one attachment structures disposed and structured to support said screen in an operative orientation,
at least two openings disposed on said screen each extending substantially along a height of said screen,
said screen and said support assembly collectively disposable into an expanded orientation and a collapsed orientation,
each of said at least two openings configured and dimensioned to allow passage therethorugh of an individual, when in said expanded orientation,
said operative orientation comprising said screen disposed in said expanded orientation and in depending relation from said support assembly, adjacent an interior of a vehicle door, concurrent to one of said at least two openings disposed in direct communication with a vehicle interior, and
said expanded orientation further comprising a privacy enclosure at least partially defined by said screen having a closed configuration.

US Pat. No. 10,113,327

SECTION OF CONCRETE

LAFARGE, Paris (FR)

1. A section of concrete adapted to form a mast of a windmill, said section of concrete defining an internal volume, said section of concrete having an outer face and an internal face opposite the outer face, said internal face arranged facing the internal volume, said section of concrete comprising:a first portion arranged to exert a bearing force on a lower adjacent part of the windmill, said first portion comprising a first flange extending in the internal volume substantially transversely from the internal face of the section of concrete,
a second portion arranged to form a bearing support for an upper adjacent part of the windmill, said second portion comprising a second flange extending in the internal volume substantially transversely from the internal face of the section of concrete,
a prestressing device arranged to apply a stress between the first portion of the section of concrete and the second portion of the section of concrete, said prestressing device comprising at least one part extending outside the section of concrete and within the internal volume, said part located between the first flange of the first portion of the section of concrete and the second flange of the second portion of the section of concrete,
a first attaching device arranged to be connected to the first flange and arranged to be used to attach the section of concrete on the lower adjacent part of the windmill, and/or
a second attaching device arranged to be connected to the second flange and arranged to be used to attach the section of concrete to the upper adjacent part of the windmill.

US Pat. No. 10,113,325

GENERATOR ENCLOSURE SYSTEM

Kohler Co., Kohler, WI (...

1. A generator enclosure system comprising:a base supporting a generator;
a first support element connected to the base and including a front and a back, wherein the front includes a locking bolt;
a second support element connected to the base;
a front panel removably connected to the first support element by a locking mechanism including a lever, wherein the locking mechanism is configured to interact with the locking bolt to lock the front panel to the first support element;
a back panel configured to attach to the first support element, the second support element, or the first support element and the second support element;
a first side panel removably connected to a connecting element of the front panel on a first side of the generator enclosure system; anda second side panel removably connected to a connecting element of the front panel on a second side of the generator enclosure system, wherein the first support element and the second support element define a first chamber, a second chamber, and a third chamber, the third chamber being for ventilation within the generator enclosure system.

US Pat. No. 10,113,323

CONCRETE FORMING STAKE APPARATUS

Stego Industries, LLC, S...

1. A concrete forming stake apparatus, comprising:a base member having a planar side and a stake mounting port disposed opposite the planar side;
a stake attachment unit including:
a tubular portion that engages with the stake mounting port, and
a joint connected to the tubular portion;
a stake that attaches to the joint; and
an adhesive layer disposed against the planar side of the base member, the adhesive being configured to secure the apparatus to a surface without penetrating fasteners.

US Pat. No. 10,113,320

RESTRAINT SYSTEM FOR ELEVATED FLOORING TILES

United Construction Produ...

1. An elevated flooring surface assembly, comprising:a plurality of support apparatuses spacedly disposed upon a fixed surface;
a plurality of flooring units disposed over upper surfaces of the support apparatuses to create an elevated flooring surface, wherein each flooring unit includes:
a support plate including:
a base having a top surface, a bottom surface opposite to the top surface, a plurality of corner portions, a plurality of outer edge segments disposed between adjacent corner portions, and an outer periphery formed by the plurality of outer edge segments and the plurality of corner portions, wherein the top surface resides in a first reference plane; and
at least a first attachment member interconnected to the base adjacent a first of the outer edge segments, wherein the first attachment member is disposed outside of the outer periphery of the base, wherein the first attachment member includes a top surface and a bottom surface opposite to the top surface, and wherein the top surface of the first attachment member is disposed between the first reference plane and the bottom surface of the first attachment member; and
a building surface component positioned over the support plate, wherein the building surface component includes a top surface, a bottom surface opposite to the top surface, a plurality of corner portions, and a plurality of outer edge segments disposed between adjacent corner portions, wherein the bottom surface of the building surface component is disposed over the top surface of the base of the support plate; and
a plurality of restraint apparatuses, wherein each restraint apparatus includes a base having a top surface and a bottom surface opposite to the top surface, wherein each restraint apparatus includes a spacer member extending upwardly away from the top surface of the restraining apparatus base, wherein the base of each restraint member is disposed over the top surfaces of the first attachment members of at least first and second of the flooring units and secured to the upper surface of at least one of the support apparatuses, and wherein the spacer of each of restraint member spaces the first and second flooring units from each other.

US Pat. No. 10,113,319

MECHANICAL LOCKING SYSTEM FOR PANELS AND METHOD OF INSTALLING SAME

VALINGE INNOVATION AB, V...

1. A set comprising a first panel and second panel, wherein the first and second panel are mechanically connectable to each other along at least one pair of adjacent edges, said panels each being provided with a tongue and groove formed in one piece with the panels, wherein the tongue and groove are configured to cooperate for mechanically locking together said adjacent edges at right angles to the principal plane of the panels, thereby forming a mechanical connection between the panels, said panels being provided with a first locking element at one first edge formed in one piece with the panel and a locking groove at an opposite second edge, the locking groove being open towards a rear side or a front side of the panel,each panel being provided with a second locking element, formed of a separate material and connected to the locking groove,
the first and second locking elements are configured to cooperate for locking the panels to each other in a direction parallel to the principal plane and at right angles to the joint edges,
the second locking element has a groove portion located in the locking groove and a projecting portion located outside the locking groove,
the second locking element is flexible and resilient such that the panels, are configured to be mechanically joined by displacement of the panels towards each other, wherein the projecting portion is configured to pivot towards the groove portion when the panels are displaced until said adjacent edges of the panels are brought into engagement with each other at the joint plane, and the second locking element at said second edge is displaced towards its initial position against the first locking element at the first edge.

US Pat. No. 10,113,316

POST MOUNT CABLE RAIL INSTALLATION SYSTEM

Vinylast, Inc., Lakewood...

1. A post mount system, comprising:a mounting pipe, wherein the mounting pipe comprises a first plurality of holes, each hole of the first plurality of holes including a plurality of threads to secure a hardware item that attaches to an end of a cable rail;
a support pipe for fitting over the mounting pipe, wherein the support pipe comprises a first end, a second end, and a second plurality of holes that are aligned with the first plurality of holes of the mounting pipe;
a post for fitting snugly over the support pipe;
the hardware item, wherein the hardware item includes a threaded portion, wherein the threaded portion is for attaching the hardware item to the mounting pipe by engaging the plurality of threads of a first hole of the first plurality of holes, and wherein the hardware item comprises an anchor for the cable rail; and
the cable rail, wherein the cable rail comprises a cable that is sized for passing substantially unhindered through the second plurality of holes of the support pipe.

US Pat. No. 10,113,315

DEBRIS EXCLUSION DEVICE FOR RAIN GUTTERS

1. A gutter protection device that allows for removal and installation of multiple filter types, the device comprising:a. a frame, the frame including;
i. an upper filter capture channel; and
ii. a lower filter capture channel;
iii. a collection channel that separates the upper filter capture channel and the lower filter capture channel;
iv. a multiplicity of drain holes within the collection channel;
b. a stiffening rib formed within the collection channel to cause water to be emptied into the center of a gutter;
c. a plurality of drain penetrations within an upper face of the stiffening rib, the plurality of drain penetrations facing the upper filter capture channel;
d. a filter;
i. the filter retained within the device by the upper filter capture channel and the lower filter capture channel of the frame.

US Pat. No. 10,113,314

LIQUID RELEASE AGENT AND ASSOCIATED METHODS OF APPLICATION

TAMKO Building Products, ...

1. An asphalt shingle comprising:a substrate sheet having a top surface and a bottom surface, the substrate sheet being coated with asphalt on at least one of the top surface or the bottom surface;
a first dispersed solid release layer on the bottom surface resulting from the dispersion and evaporation of a first liquid release layer, wherein said first liquid release layer is applied to the bottom surface;
a second dispersed solid release layer on the bottom surface resulting from the dispersion and evaporation of a second liquid release layer applied to said bottom surface, wherein the first dispersed release area only partially covers the bottom surface at the time the second dispersed release layer is applied.

US Pat. No. 10,113,313

SHEATHING RETENTION CAPSULE

1. A method of coupling a tension member to an anchor to form a post-tensioning tendon comprising:a) providing a tension member comprising a strand and a sheath, the sheath positioned about the strand;
b) providing an anchor, the anchor including:
a sheathing retention capsule having a tapered inner surface defining a forcing surface; and
one or more holding wedges, at least one of the one or more holding wedges having an inner wall and a tapered outer surface, the tapered outer surface abutting the forcing surface;
c) removing a portion of the sheath from a first end of the tension member;
d) inserting the first end of the tension member into the anchor,
e) inserting the sheath into the one or more holding wedges,
f) forming a press-fit between the sheath and the inner wall of the one or more holding wedges; and
g) coupling the strand to the anchor,
wherein step f) comprises applying a tensile force to the sheath and tightening the press-fit between the generally cylindrical sheath and the one or more holding wedges.

US Pat. No. 10,113,311

WALL ASSEMBLY

2. A double sided retaining wall or freestanding wall, comprisinga trellis panel having front and back sides, lateral ends and a top end;
a support for maintaining the trellis panel in an upright orientation;
a plurality of first facing blocks stacked into a first facing wall on one of the front and back sides of the trellis panel;
a plurality of second facing blocks stacked into a second facing wall on the other of the front and back sides of the trellis panel; and
a plurality of connectors, a rear surface of each of the first and second facing blocks being connected to the trellis panel in the stacked condition by a spaced apart pair of the connectors for maintaining the first and second facing walls upright;
each connector extending either between one stacked first facing block and the one of the front and back sides of the trellis panel to connect the first facing wall only to the trellis panel, or between one stacked second facing block and the other one of the front and back sides of the trellis panel to connect the second facing wall only to the trellis panel and for allowing shifting of the stacked first and second facing blocks within the first and second facing walls; and
wherein:
the first and second facing blocks are different in at least one of size, shape and orientation, and
the first and second facing blocks have a rear surface and a retaining recess in the rear surface for engagement by one of the connectors and at least one of a location and orientation of the retaining recesses in the stacked first facing blocks of the first facing wall differs from that of the retaining recesses in the stacked second facing blocks of the second facing wall.

US Pat. No. 10,113,307

ROLLING BLOCK RESTRAINT CONNECTOR

1. A rolling block restraint connector for forming a moment resisting connection at a joint intersection between a continuous column and at least a first continuous beam that intersects the continuous column, the connector comprising:a first restraint assembly including (i) a first beam_pressure block, (ii) a first column pressure block, and (iii) a first tubular shaft that passes through tubular channels of the first beam_pressure block and the first column pressure block;
a second restraint assembly including (i) a second beam_pressure block, (ii) a second column pressure block, and (iii) a second tubular shaft that passes through tubular channels of the second beam_pressure block and the second column pressure block, wherein the second restraint assembly is configured to be located diagonally across the joint intersection from the first restraint assembly;
a first linkage that couples the first restraint assembly with the second restraint assembly, wherein the first linkage passes through a first end of the first tubular shaft and a first end of the second tubular shaft, wherein the first linkage is configured to be located on an exterior of the first continuous beam relative to the joint intersection; and
a second linkage that couples the first restraint assembly with the second restraint assembly, wherein the second linkage passes through a second end of the first tubular shaft and a second end of the second tubular shaft.

US Pat. No. 10,113,304

SYSTEM AND METHOD FOR AGENT-BASED CONTROL OF SEWER INFRASTRUCTURE

EMNET, LLC, South Bend, ...

1. A control system to control fluid flow through a sewer system having a plurality of supplying assets, said control system comprising:a first supplying agent associated with a first supplying asset of said plurality of sewer supplying assets, wherein said first supplying agent assigns a first virtual cost to any fluid flow incoming to said first supplying asset, wherein said first virtual cost is based on a state of said first supplying asset;
a second supplying agent associated with a second supplying asset of said plurality of sewer supplying assets, wherein said second supplying agent assigns a second virtual cost to any fluid flow incoming to said second supplying asset, wherein said second virtual cost is based on a state of said second supplying asset;
a control agent associated with a control asset, wherein said control asset is adapted to direct said fluid flow from said control asset to said first supplying asset and/or said second supplying asset;
a computer network configured to accept said first virtual cost from said first supplying agent and said second virtual cost from said second supplying agent and to provide said first virtual cost and said second virtual cost to said control agent; and
wherein said control agent directs flow from the said control asset to said first supplying asset and/or said second supplying asset by minimizing a cost based on the said first virtual cost, said second virtual cost and a forecasted time delay of fluid flow from said control asset to one or both of said first supplying asset and said second supplying asset.

US Pat. No. 10,113,302

TOOL RETENTION SYSTEM HAVING POCKETED WEDGE

Catepillar Inc., Deerfie...

1. A wedge for a tool retention system, comprising:a body having a tip end and an opposing base end that is wider than the tip end;
a channel formed in the body and extending from the base end to the tip end;
an elongated pocket formed in the body at the tip end that is open to the channel; and
a ramp located in the body and extending between the channel and an end of the elongated pocket, the ramp being inclined relative to an axis of the channel, wherein the ramp is located at the tip end of the body and protrudes inward from a channel inner surface toward the elongated pocket, and wherein the ramp is a first ramp; and the wedge further includes a second ramp located at a point between the base end of the body and the first ramp, the second ramp protruding outward from a curved surface of the channel toward the elongated pocket.

US Pat. No. 10,113,301

ARRANGEMENT FOR THE REMOVABLE COUPLING OF A TOOL WITH A MANOEUVRABLE ARM OF A WORKING MACHINE

BROKK AKTIEBOLAG, Skelle...

1. An arrangement for removing coupling of a tool with a working machine, the arrangement comprising:a first part that is supported by the tool and that comprises a first and a second indentations in essentially U-shaped located opposite to and at a distance from each other,
a second part that is supported by a maneuverable arm that is a component of the working machine and that comprises a first shaft and a second shaft that are introduced into the first and second indentations, respectively in the coupled condition of the arrangement,
a lever with which the first and the second shafts are coupled in such a manner that they are allowed to move towards and away from each other, and
a locking mechanism located between the first and the second shafts for the displacement thereof towards and away from each other, and for introduction of the first and the second shafts into the respective indentations,
wherein the first shaft is coupled with a rigid first arm section that is a component of the maneuverable arm, the second shaft is united at a joint with a second arm section of the maneuverable arm that is mobile relative to the first arm section, the lever comprises at least one pair of knee lever joints, each knee lever joint comprising a first lever and a second lever, the first lever and the corresponding second lever are coupled at their opposing ends with the first shaft and the second shaft respectively,
a central intermediate region of the first and the second shafts form bearing points that are jointed with the first and second arm sections of the maneuverable arm, while external elements of the first and the second shafts are located in the first and the second indentations, respectively in the coupled condition of the arrangement, and
the locking mechanism comprises one or several control and actuator means that can be activated through remote control and that operate between the first lever and the corresponding second lever for the displacement of the first and the second shafts from each other to have a tension-based interaction with the bottom of the respective indentations.

US Pat. No. 10,113,300

WORK VEHICLE AND RIPPER DEVICE

KOMATSU LTD., Tokyo (JP)...

1. A ripper device attached to a work vehicle, comprising:a first cylinder including a tube and a rod, the first cylinder being disposed to extend and retract in a forward and backward direction in a plan view of the ripper device;
a single shank disposed in alignment with the first cylinder in the forward and backward direction in the plan view such that, in the plan view, the first cylinder and the shank are disposed on a same line extending in the forward and backward direction; and
an arm supporting the shank, the arm overlapping the tube of the first cylinder in the plan view.

US Pat. No. 10,113,298

REAR ATTACHMENT

1. A rear attachment device to connect an implement attachment to a rear of a vehicle comprised of a first plate assembly, a second plate assembly and an arm assembly;a front of the vehicle is adapted to temporarily connect to the implement attachment with full functionality of the implement attachment;
the implement attachment is any commercial attachment that is adapted to be full functioning when attached to a hydraulic power at a front of the vehicle;
the first plate assembly is affixed to a predetermined first surface at a rear of a vehicle;
the second plate assembly is affixed to a predetermined second surface at the rear of a vehicle;
the arm assembly on a first lower edge articulably attaches with a hinge to a lower edge of the first plate assembly;
the arm assembly on a second lower edge articulably attaches with a hinge to a lower edge of the second plate assembly;
a first hydraulic actuator is articulably affixed at a first end to an upper edge of the first plate assembly and on a second end is articulably affixed to a first upper edge of the arm assembly;
a second hydraulic actuator is articulably affixed at a first end to an upper edge of the second plate assembly and on a second end is articulably affixed to a second upper edge of the arm assembly;
a bracket on the arm assembly is adapted to removably connect to the implement attachment by maneuvering a hook on the implement attachment over a top edge of the arm assembly bracket and lifting the implement attachment without connecting a hydraulic power to the implement attachment;
the hook held over the arm assembly bracket supports a weight of the implement attachment;
when the first hydraulic actuator and the second hydraulic actuators are selectively simultaneously retracted, the relative angle between the arm assembly and the first and second plate assemblies decreases sufficiently to use or carry the implement attachment;
the arm assembly includes a lock to selectively secure the attachment to the bracket on the arm assembly;
wherein the implement attachment is located behind the vehicle when it is affixed to the rear attachment device.

US Pat. No. 10,113,296

DRAGLINE BUCKET RIGGING SYSTEM

Bright Technologies, L.L....

1. A dragline bucket assembly, comprising:(a) a bucket having a first lateral side and a second lateral side;
(b) a spreader bar having a first end and a second end;
(c) a first lower tensile member connecting said first lateral side of said bucket to said first end of said spreader bar;
(d) a second lower tensile member connecting said second lateral side of said bucket to said second end of said spreader bar;
(e) a yoke;
(f) a first upper tensile member connecting said first end of said spreader bar to said yoke;
(g) a second upper tensile member connecting said second end of said spreader bar to said yoke;
(h) wherein said first upper tensile member includes,
(i) a flexible stranded core, having a first end, a second end, and a stranded core outer diameter,
(ii) an armor layer, having a first end, a second end, an inner armor layer diameter, an outer armor layer diameter, and an armor layer cross sectional area,
(iii) wherein said armor layer inner diameter is substantially greater than said stranded core outer diameter,
(iv) wherein said armor layer cross sectional area is at least 25% of an area of a circle having a diameter equal to said outer armor layer diameter,
(v) a first anchor connected to said first end of said stranded core by a first potted region,
(vi) a second anchor connected to said second end of said stranded core by a second potted region,
(vii) wherein said first end of said armor layer is connected to said first anchor by a first armor layer connection that is separate from said first potted region, and
(viii) wherein said second end of said armor layer is connected to said second anchor by a second armor layer connection that is separate from said second potted region.

US Pat. No. 10,113,295

WORK MACHINE FOR DRAGLINE BUCKET OPERATION

Liebherr-Werk Nenzing Gmb...

1. A work machine for dragline bucket operation, comprising a dragline bucket taken up by a hoist rope, wherein the bucket is retractable by at least one dragline for carrying out a dragging movement and a dragline guide comprising a plurality of pulleys and roller bodies for guiding the dragline is arranged at the work machine,wherein the dragline guide is linearly movable in a horizontal direction, transverse to a dragline pulling direction,
wherein an electronic controller is provided for controlling one or more drive elements, with the electronic controller taking account of a deflection angle of the dragline on a dragline winch; and
wherein a roller head of the dragline guide comprising the plurality of pulleys and roller bodies is pivotable about a pivot angle of 360° relative to a tubular receiver.

US Pat. No. 10,113,294

MODULAR DESIGN FOR A DIPPER DOOR AND IMPROVED LATCH LEVER BAR

Caterpillar Inc., Deerfi...

1. A latch lever bar for use with a latching mechanism of a dipper door that includes a latch bar that includes a yoke, the latch lever bar comprising:an interface portion that includes a straight surface that is configured to contact the yoke of a latch bar; and
a pivot connecting portion that is configured to pivotally connect the latch lever bar to the door, wherein the pivot connecting portion defines a pivot point that is collinear with the straight surface of the interface portion;
the latch lever bar comprises a body that defines an X and a Y direction, and a X-Z plane; wherein the latch lever bar comprises a top protrusion that extends from the body a distance measured in the Y direction;
the body of the latch lever bar defines a bottommost edge adjacent the yoke interface portion along the X direction and a recess with an apex that extends from the bottommost edge along the X direction, the body further comprising a bottom protrusion that extends from the body a distance measured in the negative Y direction such that the bottom surface of the bottom protrusion is flush with the bottommost edge in a plane parallel to the X-Z plane containing the bottommost edge, defining a distance between the apex of the recess and the bottommost edge measured in the Y direction;
the distance between the apex of the recess and the bottommost edge is less than the distance that the top protrusion extends from the body of the latch lever bar;
the bottom protrusion includes a plateau and the top protrusion includes a right sloping surface that is configured to be a stop surface.

US Pat. No. 10,113,292

QUICK COUPLER CONTROL DEVICE FOR WORKING MACHINE

Caterpillar SARL, Geneva...

1. A quick coupler control device for a working machine comprising:a quick coupler that allows a work tool to be removably installed on a working arm of the working machine;
a lock cylinder attached to the quick coupler and having a lock-side chamber that is pressurized when the work tool installed on the quick coupler is actuated in a lock direction in which the work tool is fixed and an unlock-side chamber that is pressurized when the work tool is actuated in an unlock direction in which the work tool is unfixed;
a solenoid-operated first direction control valve having an unexcited position where a working fluid fed under pressure from a fluid pressure source is guided to a lock-side chamber of the lock cylinder and an excited position where the working fluid fed under pressure from the fluid pressure source is guided to an unlock-side chamber of the lock cylinder and where a return fluid discharged from the lock-side chamber is discharged to a low pressure side of the fluid pressure source;
a pilot-operated first check valve that sets a forward direction, in which a working fluid is fed under pressure from the first direction control valve to the lock-side chamber of the lock cylinder, a check function of the pilot-operated first check valve being cancelled by a working fluid fed under pressure to the unlock-side chamber of the lock cylinder;
a pilot-operated second check valve that sets a forward direction, in which a working fluid is fed under pressure to the unlock-side chamber of the lock cylinder, a check function of the pilot-operated second check valve being cancelled by a working fluid fed under pressure to the lock-side chamber of the lock cylinder;
a solenoid-operated second direction control valve having an unexcited position where a return fluid flowing out from the unlock-side chamber of the lock cylinder via the second check valve is discharged to the low pressure side of the fluid pressure source and where a working fluid fed via the first direction control valve is blocked and an excited position where a working fluid fed via the first direction control valve is guided to the unlock-side chamber of the lock cylinder;
a tool cylinder that pivots the work tool that is removably installed on the working arm of the working machine via the quick coupler;
a mode selector switch that switches between a lock mode where the lock cylinder is actuated in the lock direction and an unlock mode where the lock cylinder is actuated in the unlock direction;
a first sensor that detects whether a state of operation where the tool cylinder is actuated in a predetermined direction is established or whether a state of no operation where the tool cylinder is not actuated in the predetermined direction is established;
a second sensor that detects whether a loaded state where load is applied to the tool cylinder is established and a unloaded state where load is not applied to the tool cylinder is established; and
a controller having a function to control the first direction control valve and the second direction control valve to the unexcited position when the mode selector switch is in the lock mode and to control the first direction control valve and the second direction control valve to the excited position when the mode selector switch is in the unlock mode and the first sensor and the second sensor detect the operation state and the loaded state, respectively, and otherwise to control the first direction control valve and the second direction control valve to the excited position and the unexcited position, respectively.

US Pat. No. 10,113,291

SUMP SYSTEM WITH OVERFLOW PROTECTION

STATE FARM MUTUAL AUTOMOB...

1. A method of protecting a sump system from overflow during intense rainfall events, wherein the sump system includes a drain line having a discharge orifice leading into a sump pit and hydraulically coupled to a water drainage system to transfer water from the water drainage system into the sump pit, and a water removal system arranged to remove water from the sump pit, the method including:installing a flow restrictor along the drain line, wherein the flow restrictor is sized and arranged to restrict the total maximum flow capacity of the drain line into the sump pit to match the maximum capacity output flow rate of the water removal system, and wherein the flow restrictor does not completely shut off or prevent flow of water through the drain line and thereby does not form a dead head of water within the drain line.

US Pat. No. 10,113,290

METHOD OF INSTALLING A FOUNDATION IN THE SEA BED AND SUCH FOUNDATION

1. A sea bed foundation for an offshore facility, said sea bed foundation having a circumferential side wall substantially defining a cylinder, which cylinder is closed in one end and provided with an opening in the opposite end, thereby defining a primary chamber, said sea bed foundation is hollow, downwardly open and where said side wall defines a skirt, said primary chamber being connected to a primary pump, and wherein said sea bed foundation further comprises one or more secondary chambers, said secondary chambers being separate from the primary chamber, and being downwardly open, but otherwise closed by the sea bed foundation, where said one or more secondary chambers are connected to one or more secondary pumps wherein said primary pump is a suction pump and said secondary pump is a pressure pump, and where an over-pressure created by the one or more secondary pumps increases a resistance against penetration adjacent the one or more secondary chambers, allowing a rest of the foundation to penetrate a bottom at a normal resistance, thereby rectifying an orientation of the foundation.